A Combined KPCA and SVM Method for Basic Emotional Expressions Recognition

S. Fazli, R. Afrouzian, Hadi Seyedarabi
{"title":"A Combined KPCA and SVM Method for Basic Emotional Expressions Recognition","authors":"S. Fazli, R. Afrouzian, Hadi Seyedarabi","doi":"10.1109/ICMV.2009.67","DOIUrl":null,"url":null,"abstract":"Automatic analysis of facial expression has become a popular research area because of it’s many applications in the field of computer vision. This paper presents a hybrid method based on Gabor filter, Kernel Principle Component Analysis (KPCA) and Support Vector Machine (SVM) for classification of facial expressions into six basic emotions. At first, Gabor filter bank is applied on input images. Then, the feature reduction technique of KPCA is performed on the outputs of the filter. Finally, SVM is used for classification. The proposed method is tested on the Cohen-Kanade’s facial expression images dataset. The results of the proposed method are compared to the ones of the combined Principle Component Analysis (PCA) and SVM classifier. Experimental results show the effectiveness of the proposed method. The average recognition rate of 89.9% is achieved in this work which is higher than 87.3% resulted from a common combined PCA and SVM method.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automatic analysis of facial expression has become a popular research area because of it’s many applications in the field of computer vision. This paper presents a hybrid method based on Gabor filter, Kernel Principle Component Analysis (KPCA) and Support Vector Machine (SVM) for classification of facial expressions into six basic emotions. At first, Gabor filter bank is applied on input images. Then, the feature reduction technique of KPCA is performed on the outputs of the filter. Finally, SVM is used for classification. The proposed method is tested on the Cohen-Kanade’s facial expression images dataset. The results of the proposed method are compared to the ones of the combined Principle Component Analysis (PCA) and SVM classifier. Experimental results show the effectiveness of the proposed method. The average recognition rate of 89.9% is achieved in this work which is higher than 87.3% resulted from a common combined PCA and SVM method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于KPCA和SVM的基本情感表情识别方法
面部表情自动分析在计算机视觉领域有着广泛的应用,已成为一个热门的研究领域。提出了一种基于Gabor滤波、核主成分分析(KPCA)和支持向量机(SVM)的混合方法,将面部表情分类为六种基本情绪。首先对输入图像应用Gabor滤波器组。然后,对滤波器的输出进行KPCA特征约简技术。最后,利用支持向量机进行分类。在Cohen-Kanade面部表情图像数据集上对该方法进行了测试。将该方法的结果与主成分分析(PCA)和支持向量机(SVM)组合分类器的结果进行了比较。实验结果表明了该方法的有效性。该方法的平均识别率为89.9%,高于常用的主成分分析和支持向量机联合方法的87.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration Early Software Fault Prediction Using Real Time Defect Data Effective Watermarking of Digital Audio and Image Using Matlab Technique A Robust Neural System for Objectionable Image Recognition A Hybrid Scheme for Online Detection and Classification of Textural Fabric Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1