Electrospinning with Droplet Generators: A Method for Continuous Electrospinning of Emulsion Fibers

B. N. Jensen, T. Pedersen, P. Fojan
{"title":"Electrospinning with Droplet Generators: A Method for Continuous Electrospinning of Emulsion Fibers","authors":"B. N. Jensen, T. Pedersen, P. Fojan","doi":"10.13052/jsame2245-8824.2022.001","DOIUrl":null,"url":null,"abstract":"Emulsion electrospinning is a promising method for creating fibrous vehicles for delivery of drugs and bioactive compounds for the medical and food industries. Droplet microfluidics is a potent way of continuously generating controllable emulsion droplets. The incorporation of a droplet generator in an electrospinning setup for continuous electrospinning of emulsion fibers has been investigated. The influence of a droplet generator on the morphology of emulsion fibers has been established through electrospinning of emulsions of grapeseed oil in PVA and gelatine. The droplet generator was found to have no influence on the morphology of fibers. Conventional emulsification methods and droplet generator emulsification has been used to investigate the influence of emulsion droplet sizes on the morphology of emulsion fibers. Increasing the emulsion droplet size was found to create in-fiber droplets with diameters larger than the fiber diameter. The size of the in-fiber droplets was found to be dependent on both material and emulsion size.","PeriodicalId":250057,"journal":{"name":"Journal of Self Assembly and Molecular Electronics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Self Assembly and Molecular Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jsame2245-8824.2022.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emulsion electrospinning is a promising method for creating fibrous vehicles for delivery of drugs and bioactive compounds for the medical and food industries. Droplet microfluidics is a potent way of continuously generating controllable emulsion droplets. The incorporation of a droplet generator in an electrospinning setup for continuous electrospinning of emulsion fibers has been investigated. The influence of a droplet generator on the morphology of emulsion fibers has been established through electrospinning of emulsions of grapeseed oil in PVA and gelatine. The droplet generator was found to have no influence on the morphology of fibers. Conventional emulsification methods and droplet generator emulsification has been used to investigate the influence of emulsion droplet sizes on the morphology of emulsion fibers. Increasing the emulsion droplet size was found to create in-fiber droplets with diameters larger than the fiber diameter. The size of the in-fiber droplets was found to be dependent on both material and emulsion size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用液滴发生器静电纺丝:一种乳液纤维连续静电纺丝方法
乳液静电纺丝是一种很有前途的方法,用于制造纤维载体,用于医疗和食品工业的药物和生物活性化合物的输送。液滴微流体是连续生成可控乳化液液滴的有效途径。研究了在静电纺丝装置中加入液滴发生器用于乳化纤维的连续静电纺丝。以葡萄籽油为原料,在聚乙烯醇和明胶中进行静电纺丝,研究了液滴产生器对乳化纤维形态的影响。液滴产生器对纤维的形态没有影响。采用常规乳化法和微滴发生器乳化法研究了微滴大小对乳化纤维形态的影响。增大乳化液液滴的尺寸可以产生直径大于纤维直径的纤维内液滴。发现纤维内液滴的大小取决于材料和乳液的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Phospholipid Nano-Microfibers and Nano-Microparticles by Electrohydrodynamic Processing: A Review DNA by Design: De novo Computational Framework for DNA Sequence Design and Nanotechnology Electrospinning with Droplet Generators: A Method for Continuous Electrospinning of Emulsion Fibers Influence of Film Morphology on Transient Photocurrent Pulse Shape in Organic Thin Films: A Monte Carlo Study Probing the Amyloid Peptide-Membrane Interaction Using a Liposome Model System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1