Gonzalo Vegas-Sánchez-Ferrero, D. Martín-Martínez, S. Aja‐Fernández, C. Palencia
{"title":"On the influence of interpolation on probabilistic models for ultrasonic images","authors":"Gonzalo Vegas-Sánchez-Ferrero, D. Martín-Martínez, S. Aja‐Fernández, C. Palencia","doi":"10.1109/ISBI.2010.5490353","DOIUrl":null,"url":null,"abstract":"The influence of the cartesian interpolation of ultrasound data over the final image statistical model is studied. When fully formed speckle is considered and no compression of the data is done, we show that the interpolated final image can be modeled following a Gamma distribution, which is a good approximation for the weighted sum of Rayleigh variables. The importance of taking into account the interpolation stage to statistically model ultrasound images is pointed out. The interpolation model here proposed can be easily extended to more complex distributions.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
The influence of the cartesian interpolation of ultrasound data over the final image statistical model is studied. When fully formed speckle is considered and no compression of the data is done, we show that the interpolated final image can be modeled following a Gamma distribution, which is a good approximation for the weighted sum of Rayleigh variables. The importance of taking into account the interpolation stage to statistically model ultrasound images is pointed out. The interpolation model here proposed can be easily extended to more complex distributions.