{"title":"Evolving Weighted Contact Networks for Epidemic Modeling: the Ring and the Power","authors":"James Sargant, S. Houghten, Michael Dubé","doi":"10.1109/CEC55065.2022.9870440","DOIUrl":null,"url":null,"abstract":"A generative evolutionary algorithm is used to evolve weighted personal contact networks that represent physical contact between individuals, and thus possible paths of infection during an epidemic. The evolutionary algorithm evolves a list of edge-editing operations applied to an initial graph. Two initial graphs are considered, a ring graph and a power-law graph. Different probabilities of infection and a wide range of weights are considered, which improve performance over other work. Modified edge operations are introduced, which also improve performance. It is shown that when trying to maximize epidemic duration, the best results are obtained when using the ring graph as the initial graph. When attempting to match a given epidemic profile, similar results are obtained when using either initial graph, but both improve performance over other work.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A generative evolutionary algorithm is used to evolve weighted personal contact networks that represent physical contact between individuals, and thus possible paths of infection during an epidemic. The evolutionary algorithm evolves a list of edge-editing operations applied to an initial graph. Two initial graphs are considered, a ring graph and a power-law graph. Different probabilities of infection and a wide range of weights are considered, which improve performance over other work. Modified edge operations are introduced, which also improve performance. It is shown that when trying to maximize epidemic duration, the best results are obtained when using the ring graph as the initial graph. When attempting to match a given epidemic profile, similar results are obtained when using either initial graph, but both improve performance over other work.