Nonlinear Extended State Observer Based Robust Control for Quadrotor UAV Trajectory Tracking with Input Saturation*

Zhipeng Zhang, Jun Shen
{"title":"Nonlinear Extended State Observer Based Robust Control for Quadrotor UAV Trajectory Tracking with Input Saturation*","authors":"Zhipeng Zhang, Jun Shen","doi":"10.1109/ISAS59543.2023.10164412","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of robust anti-disturbance control of a quadrotor unmanned aerial vehicle (UAV) with input saturation and disturbance is investigated. A sliding mode trajectory tracking control method based on nonlinear extended state observer (NLESO) is presented. This approach first designs a NLESO for estimating all states and total disturbances in the quadrotor UAV. Then, a hyperbolic tangent function is introduced to approach the actuator saturation function. Combined with the traditional sliding mode control method, a second-order auxiliary dynamic system is adopted to compensate for the influence of input saturation. Moreover, the trajectory tracking capability of all signals of the closed-loop system is demonstrated by Lyapunov stability. Finally, quadrotor UAV model-based data simulation is presented to illustrate the theoretical results.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the problem of robust anti-disturbance control of a quadrotor unmanned aerial vehicle (UAV) with input saturation and disturbance is investigated. A sliding mode trajectory tracking control method based on nonlinear extended state observer (NLESO) is presented. This approach first designs a NLESO for estimating all states and total disturbances in the quadrotor UAV. Then, a hyperbolic tangent function is introduced to approach the actuator saturation function. Combined with the traditional sliding mode control method, a second-order auxiliary dynamic system is adopted to compensate for the influence of input saturation. Moreover, the trajectory tracking capability of all signals of the closed-loop system is demonstrated by Lyapunov stability. Finally, quadrotor UAV model-based data simulation is presented to illustrate the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性扩展状态观测器的四旋翼无人机轨迹跟踪鲁棒控制
研究了具有输入饱和和干扰的四旋翼无人机的鲁棒抗干扰控制问题。提出一种基于非线性扩展状态观测器(NLESO)的滑模轨迹跟踪控制方法。该方法首先设计了用于估计四旋翼无人机所有状态和总扰动的NLESO。然后,引入双曲正切函数逼近致动器饱和函数。结合传统的滑模控制方法,采用二阶辅助动态系统补偿输入饱和的影响。此外,利用李雅普诺夫稳定性证明了闭环系统所有信号的轨迹跟踪能力。最后,基于四旋翼无人机模型的数据仿真验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new type of video text automatic recognition method and its application in film and television works H∞ state feedback control for fuzzy singular Markovian jump systems with constant time delays and impulsive perturbations MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction Digital twin based bearing fault simulation modeling strategy and display dynamics End-to-End Model-Based Gait Recognition with Matching Module Based on Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1