A New Semiconductor Package Design Flow and Platform Applied on High Density Fan-out Chip

Chen-Chao Wang, Chih-Yi Huang, K. Chang, Youle Lin
{"title":"A New Semiconductor Package Design Flow and Platform Applied on High Density Fan-out Chip","authors":"Chen-Chao Wang, Chih-Yi Huang, K. Chang, Youle Lin","doi":"10.1109/ECTC32696.2021.00030","DOIUrl":null,"url":null,"abstract":"In recent years, because the needs of 5G mobile communications, artificial intelligence, self-driving cars, and high-speed networks product are highly increasing, more and more IC design companies have invested in a lots of computing and high-performance computing device development. At present, the package type used in such high-performance computing product mass production is 2.5D IC package with ultra-high density I/O, which is special for packaging of IC products such as AI, high performance GPU, and high-speed networking devices. Compared to the traditional Flip Chip BGA (FCBGA) package on the market, the 2.5D package has a unique silicon interposer, and there are ASIC chip and HBM chips on the silicon interposer. Between the ASIC chip and the HBM chips, a lot of high-speed signal lines and thousands of small vias are connected. In addition to the signal line between the ASIC chip and the HBM chip, the silicon interposer has an important structure-TSV (Through Silicon Via) to act as the connection between the ASIC chips or the HBM chips and the package substrate. Because of the existing of TSV, the production yield of the silicon interposer is not easy to increase. Considering productivity and cost, some OSAT (Outsourced Semiconductor Assembly and Test) companies hence [1]–[5] proposed some TSV-free packaging structures, such as FOCoS (Fan-out Chip on Substrate). According to different process, there are Chip First FOCoS and Chip last FOCoS, which are suitable for different applications and production costs [6]. The research and discussion in this paper, there are package design with the structure of FOCoS for an actual high-performance computing IC device with two ASIC chips. In the process of this actual project, the SiP-id (System-in-Package Intelligent Design) design platform was used to complete the routings of ultra-high density I/O such as the Si interposer MEOL (Middle End of Line) and Fan-Out RDL. Compared with the traditional design platform, it was greatly pull-in design cycle time. The design time and the accuracy of the design are improved obviously. In addition, this paper also delivers a lot of self-developed programs to link the design and validation tools from different vendors.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, because the needs of 5G mobile communications, artificial intelligence, self-driving cars, and high-speed networks product are highly increasing, more and more IC design companies have invested in a lots of computing and high-performance computing device development. At present, the package type used in such high-performance computing product mass production is 2.5D IC package with ultra-high density I/O, which is special for packaging of IC products such as AI, high performance GPU, and high-speed networking devices. Compared to the traditional Flip Chip BGA (FCBGA) package on the market, the 2.5D package has a unique silicon interposer, and there are ASIC chip and HBM chips on the silicon interposer. Between the ASIC chip and the HBM chips, a lot of high-speed signal lines and thousands of small vias are connected. In addition to the signal line between the ASIC chip and the HBM chip, the silicon interposer has an important structure-TSV (Through Silicon Via) to act as the connection between the ASIC chips or the HBM chips and the package substrate. Because of the existing of TSV, the production yield of the silicon interposer is not easy to increase. Considering productivity and cost, some OSAT (Outsourced Semiconductor Assembly and Test) companies hence [1]–[5] proposed some TSV-free packaging structures, such as FOCoS (Fan-out Chip on Substrate). According to different process, there are Chip First FOCoS and Chip last FOCoS, which are suitable for different applications and production costs [6]. The research and discussion in this paper, there are package design with the structure of FOCoS for an actual high-performance computing IC device with two ASIC chips. In the process of this actual project, the SiP-id (System-in-Package Intelligent Design) design platform was used to complete the routings of ultra-high density I/O such as the Si interposer MEOL (Middle End of Line) and Fan-Out RDL. Compared with the traditional design platform, it was greatly pull-in design cycle time. The design time and the accuracy of the design are improved obviously. In addition, this paper also delivers a lot of self-developed programs to link the design and validation tools from different vendors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于高密度扇出芯片的新型半导体封装设计流程和平台
近年来,由于5G移动通信、人工智能、自动驾驶汽车、高速网络产品的需求高度增长,越来越多的IC设计公司投入了大量的计算和高性能计算设备的开发。目前,用于此类高性能计算产品量产的封装类型为超高密度I/O的2.5D IC封装,专门用于AI、高性能GPU、高速网络设备等IC产品的封装。与市场上传统的倒装BGA (FCBGA)封装相比,2.5D封装具有独特的硅中间层,并且在硅中间层上有ASIC芯片和HBM芯片。在ASIC芯片和HBM芯片之间,连接着许多高速信号线和成千上万的小过孔。除了ASIC芯片和HBM芯片之间的信号线外,硅中间层还有一个重要的结构——tsv (Through silicon Via),作为ASIC芯片或HBM芯片与封装基板之间的连接。由于TSV的存在,硅中间层的成品率不易提高。考虑到生产力和成本,一些OSAT(外包半导体组装和测试)公司因此[1]-[5]提出了一些无tsv的封装结构,如FOCoS(基板上的扇形芯片)。根据不同的工艺,有芯片优先foco和芯片后foco,适用于不同的应用和生产成本。在本文的研究和讨论中,针对一个实际的高性能计算集成电路器件,采用foco结构进行了封装设计。在实际项目过程中,采用SiP-id (System-in-Package Intelligent Design)设计平台完成Si interposer MEOL (Middle End of Line)、Fan-Out RDL等超高密度I/O的布线。与传统的设计平台相比,大大缩短了设计周期。设计时间和设计精度明显提高。此外,本文还提供了许多自行开发的程序来连接来自不同供应商的设计和验证工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetically Actuated Test Method for Interfacial Fracture Reliability Assessment nSiP(System in Package) Platform for various module packaging applications IEEE 71st Electronic Components and Technology Conference [Title page] Evaluation of Low-k Integration Integrity Using Shear Testing on Sub-30 Micron Micro-Cu Pillars CoW Package Solution for Improving Thermal Characteristic of TSV-SiP for AI-Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1