Airport Runway Foreign Object Debris (FOD) Detection Based on YOLOX Architecture

Jajang Taupik, Tossin Alamsyah, Asri Wulandari, Edmund Ucok Armin, A. Hikmaturokhman
{"title":"Airport Runway Foreign Object Debris (FOD) Detection Based on YOLOX Architecture","authors":"Jajang Taupik, Tossin Alamsyah, Asri Wulandari, Edmund Ucok Armin, A. Hikmaturokhman","doi":"10.1109/ICCoSITE57641.2023.10127676","DOIUrl":null,"url":null,"abstract":"Today, every airport manager in various countries has tightened runway security to avoid the entry of foreign objects that can endanger passengers and aircraft both when landing and taking off. Inspection and supervision of the runway must be carried out regularly. However, there are still many airports that carry out inspections and supervision by human labor without any technological support. Whereas inspection and supervision using human labor takes a relatively long time and is prone to errors, especially in bad weather and limited visibility. Technological developments in runway security using radar are one of the solutions. However, radar technology is relatively expensive, so many airport managers use computer vision because it is considered cheaper and more accurate. The use of computer vision has grown rapidly in monitoring FOD on aircraft runways. Our method is an impovement of the YOLOX architecture by moving output objects to branch classes. Our method got a MAP score of 0.832 which has an increase in score of 0.021 from the previous method in detecting FOD in classes of people, vehicles, birds, cats and dogs.","PeriodicalId":256184,"journal":{"name":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCoSITE57641.2023.10127676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Today, every airport manager in various countries has tightened runway security to avoid the entry of foreign objects that can endanger passengers and aircraft both when landing and taking off. Inspection and supervision of the runway must be carried out regularly. However, there are still many airports that carry out inspections and supervision by human labor without any technological support. Whereas inspection and supervision using human labor takes a relatively long time and is prone to errors, especially in bad weather and limited visibility. Technological developments in runway security using radar are one of the solutions. However, radar technology is relatively expensive, so many airport managers use computer vision because it is considered cheaper and more accurate. The use of computer vision has grown rapidly in monitoring FOD on aircraft runways. Our method is an impovement of the YOLOX architecture by moving output objects to branch classes. Our method got a MAP score of 0.832 which has an increase in score of 0.021 from the previous method in detecting FOD in classes of people, vehicles, birds, cats and dogs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于YOLOX架构的机场跑道异物碎片(FOD)检测
如今,各个国家的机场管理者都加强了跑道安全,以避免在着陆和起飞时可能危及乘客和飞机的异物进入。必须定期对跑道进行检查和监督。然而,目前仍有不少机场在没有任何技术支持的情况下,依靠人工进行检查和监管。而人工检查和监督耗时较长,而且容易出错,特别是在恶劣天气和能见度有限的情况下。使用雷达的跑道安全技术发展是解决方案之一。然而,雷达技术相对昂贵,所以许多机场管理人员使用计算机视觉,因为它被认为更便宜,更准确。计算机视觉在飞机跑道上的残障监测中应用迅速增长。我们的方法是对YOLOX体系结构的改进,将输出对象移动到分支类中。我们的方法在检测人、车、鸟、猫和狗类的FOD时,MAP得分为0.832,比之前的方法提高了0.021分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Customer Relationship Management, Customer Retention, and the Mediating Role of Customer Satisfaction on a Healthcare Mobile Applications Revalidating the Encoder-Decoder Depths and Activation Function to Find Optimum Vanilla Transformer Model Goertzel Algorithm Design on Field Programmable Gate Arrays For Implementing Electric Power Measurement Instagram vs TikTok: Which Engage Best for Consumer Brand Engagement for Social Commerce and Purchase Intention? Air Pollution Prediction using Random Forest Classifier: A Case Study of DKI Jakarta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1