Advances in Carbon Nanotube Technologies: From Transistors to a RISC-V Microprocessor

G. Hills
{"title":"Advances in Carbon Nanotube Technologies: From Transistors to a RISC-V Microprocessor","authors":"G. Hills","doi":"10.1145/3439706.3446897","DOIUrl":null,"url":null,"abstract":"Carbon nanotube (CNT) field-effect transistors (CNFETs) promise to improve the energy efficiency of very-large-scale integrated (VLSI) systems. However, multiple challenges have prevented VLSI CNFET circuits from being realized, including inherent nano-scale material defects, robust processing for yielding complementary CNFETs (i.e., CNT CMOS: including both PMOS and NMOS CNFETs), and major CNT variations. In this talk, we summarize techniques that we have recently developed to overcome these outstanding challenges, enabling VLSI CNFET circuits to be experimentally realized today using standard VLSI processing and design flows. Leveraging these techniques, we demonstrate the most complex CNFET circuits and systems to-date, including a three-dimensional (3D) imaging system comprising CNFETs fabricated directly on top of a silicon imager, CNT CMOS analog and mixed-signal circuits, 1 kilobit CNFET static random-access memory (SRAM) memory arrays, and a 16-bit RISC-V microprocessor built entirely out of CNFETs.","PeriodicalId":184050,"journal":{"name":"Proceedings of the 2021 International Symposium on Physical Design","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3439706.3446897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotube (CNT) field-effect transistors (CNFETs) promise to improve the energy efficiency of very-large-scale integrated (VLSI) systems. However, multiple challenges have prevented VLSI CNFET circuits from being realized, including inherent nano-scale material defects, robust processing for yielding complementary CNFETs (i.e., CNT CMOS: including both PMOS and NMOS CNFETs), and major CNT variations. In this talk, we summarize techniques that we have recently developed to overcome these outstanding challenges, enabling VLSI CNFET circuits to be experimentally realized today using standard VLSI processing and design flows. Leveraging these techniques, we demonstrate the most complex CNFET circuits and systems to-date, including a three-dimensional (3D) imaging system comprising CNFETs fabricated directly on top of a silicon imager, CNT CMOS analog and mixed-signal circuits, 1 kilobit CNFET static random-access memory (SRAM) memory arrays, and a 16-bit RISC-V microprocessor built entirely out of CNFETs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管技术的进展:从晶体管到RISC-V微处理器
碳纳米管(CNT)场效应晶体管(cnfet)有望提高超大规模集成电路(VLSI)系统的能效。然而,多种挑战阻碍了VLSI CNFET电路的实现,包括固有的纳米级材料缺陷,产生互补CNFET(即CNT CMOS:包括PMOS和NMOS CNFET)的稳健处理,以及主要的CNT变体。在这次演讲中,我们总结了我们最近开发的技术,以克服这些突出的挑战,使VLSI CNFET电路能够在今天使用标准的VLSI处理和设计流程进行实验实现。利用这些技术,我们展示了迄今为止最复杂的CNFET电路和系统,包括三维(3D)成像系统,包括直接在硅成像仪上制造的CNFET, CNT CMOS模拟和混合信号电路,1千比特CNFET静态随机存取存储器(SRAM)存储器阵列,以及完全由CNFET构建的16位RISC-V微处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reinforcement Learning for Placement Optimization Session details: Session 8: Monolithic 3D and Packaging Session ISPD 2021 Wafer-Scale Physics Modeling Contest: A New Frontier for Partitioning, Placement and Routing Scalable System and Silicon Architectures to Handle the Workloads of the Post-Moore Era A Lifetime of ICs, and Cross-field Exploration: ISPD 2021 Lifetime Achievement Award Bio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1