Noise performance in strained Si heterojunction bipolar transistors

M. Fjer, S. Persson, E. Escobedo-Cousin, A. O'Neill
{"title":"Noise performance in strained Si heterojunction bipolar transistors","authors":"M. Fjer, S. Persson, E. Escobedo-Cousin, A. O'Neill","doi":"10.1109/ESSDERC.2011.6044182","DOIUrl":null,"url":null,"abstract":"In this paper, a study of the noise performance of strained Si Heterojunction Bipolar Transistors (sSi HBTs) is presented. This novel device exhibits low noise levels compared with Si Bipolar Junction Transistors (Si BJTs) and SiGe Heterojunction Bipolar Transistors (SiGe HBTs) for the same collector current, which can lower the noise in circuit applications. This performance benefit originates from the high current gain in sSi HBTs. However, the latter shows a higher noise level compared with the other devices at fixed base current. This is due to the presence of defects that are caused by the integration of a strained relaxed buffer used in the fabrication of sSi HBTs. The relationship between low frequency noise and defects has also been demonstrated using material characterisation.","PeriodicalId":161896,"journal":{"name":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2011.6044182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a study of the noise performance of strained Si Heterojunction Bipolar Transistors (sSi HBTs) is presented. This novel device exhibits low noise levels compared with Si Bipolar Junction Transistors (Si BJTs) and SiGe Heterojunction Bipolar Transistors (SiGe HBTs) for the same collector current, which can lower the noise in circuit applications. This performance benefit originates from the high current gain in sSi HBTs. However, the latter shows a higher noise level compared with the other devices at fixed base current. This is due to the presence of defects that are caused by the integration of a strained relaxed buffer used in the fabrication of sSi HBTs. The relationship between low frequency noise and defects has also been demonstrated using material characterisation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应变硅异质结双极晶体管的噪声性能
本文研究了应变硅异质结双极晶体管(sSi HBTs)的噪声性能。在相同集电极电流下,与Si双极结晶体管(Si BJTs)和SiGe异质结双极晶体管(SiGe HBTs)相比,该器件具有较低的噪声水平,可以降低电路应用中的噪声。这种性能优势源于sSi hbt的高电流增益。然而,在固定基极电流下,后者显示出比其他器件更高的噪声水平。这是由于在制造sSi hbt中使用的应变松弛缓冲的集成引起的缺陷的存在。低频噪声与缺陷之间的关系也通过材料表征得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low cost multi quantum SiGe/Si/Schottky structure for high performance IR detectors Accurate measurements of the charge pumping current due to individual MOS interface traps and interactions in the carrier capture/emission processes Extracting the conduction band offset in strained FinFETs from subthreshold-current measurements Variability analysis of scaled poly-Si channel FinFETs and tri-gate flash memories for high density and low cost stacked 3D-memory application EM-TCAD solving from 0–100 THz: A new implementation of an electromagnetic solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1