{"title":"A Procedure for GaN HEMT Charge Functions Extraction from Multi-Bias S-Parameters","authors":"Gian Piero Gibiino, A. Santarelli, F. Filicori","doi":"10.23919/EUMIC.2018.8539947","DOIUrl":null,"url":null,"abstract":"A charge function identification procedure for GaN-HEMTs is proposed. This is based on a frequency-domain integration of displacement current waveforms obtained from an auxiliary model extracted from multi-bias S-parameters. The method is compared with a similar technique recently proposed, which is instead based on direct acquisitions of large-signal waveforms at the transistor ports by means of a nonlinear vector network analyzer (NVNA). Comparisons between the two approaches are provided by using a 1-mm GaN-on-SiC HEMT, leading to conclude that thermal and trap-induced dispersion on charges have an impact quantified in ∼ 4% − 18% normalized mean square error on the displacement current prediction, depending on the waveforms considered.","PeriodicalId":248339,"journal":{"name":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2018.8539947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A charge function identification procedure for GaN-HEMTs is proposed. This is based on a frequency-domain integration of displacement current waveforms obtained from an auxiliary model extracted from multi-bias S-parameters. The method is compared with a similar technique recently proposed, which is instead based on direct acquisitions of large-signal waveforms at the transistor ports by means of a nonlinear vector network analyzer (NVNA). Comparisons between the two approaches are provided by using a 1-mm GaN-on-SiC HEMT, leading to conclude that thermal and trap-induced dispersion on charges have an impact quantified in ∼ 4% − 18% normalized mean square error on the displacement current prediction, depending on the waveforms considered.