Subspace and hypothesis based effective segmentation of co-articulated basic-units for concatenative speech synthesis

R. Muralishankar, R. Srikanth, A. Ramakrishnan
{"title":"Subspace and hypothesis based effective segmentation of co-articulated basic-units for concatenative speech synthesis","authors":"R. Muralishankar, R. Srikanth, A. Ramakrishnan","doi":"10.1109/TENCON.2003.1273351","DOIUrl":null,"url":null,"abstract":"In this paper, we present two new methods for vowel-consonant segmentation of a co-articulated basic-units employed in our Thirukkural Tamil text-to-speech synthesis system (G. L. Jayavardhana Rama et al, IEEE workshop on Speech Synthesis, 2002). The basic-units considered in this are CV, VC, VCV, VCCV and VCCC, where C stands for a consonant and V for any vowel. In the first method, we use a subspace-based approach for vowel-consonant segmentation. It uses oriented principal component analysis (OPCA) where the test feature vectors are projected on to the V and C subspaces. The crossover of the norm-contours obtained by projecting the test basic-unit onto the V and C subspaces give the segmentation points which in turn helps in identifying the V and C durations of a test basic-unit. In the second method, we use probabilistic principal component analysis (PPCA) to get probability models for V and C. We then use the Neymen-Pearson (NP) test to segment the basic-unit into V and C. Finally, we show that the hypothesis testing turns out to be an energy detector for V-C segmentation which is similar to the first method.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present two new methods for vowel-consonant segmentation of a co-articulated basic-units employed in our Thirukkural Tamil text-to-speech synthesis system (G. L. Jayavardhana Rama et al, IEEE workshop on Speech Synthesis, 2002). The basic-units considered in this are CV, VC, VCV, VCCV and VCCC, where C stands for a consonant and V for any vowel. In the first method, we use a subspace-based approach for vowel-consonant segmentation. It uses oriented principal component analysis (OPCA) where the test feature vectors are projected on to the V and C subspaces. The crossover of the norm-contours obtained by projecting the test basic-unit onto the V and C subspaces give the segmentation points which in turn helps in identifying the V and C durations of a test basic-unit. In the second method, we use probabilistic principal component analysis (PPCA) to get probability models for V and C. We then use the Neymen-Pearson (NP) test to segment the basic-unit into V and C. Finally, we show that the hypothesis testing turns out to be an energy detector for V-C segmentation which is similar to the first method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于子空间和假设的协同语音合成基本单元有效分割
在本文中,我们提出了两种新的方法,用于在Thirukkural泰米尔语文本-语音合成系统中使用的共同发音基本单元的元音-辅音分割(g.l. Jayavardhana Rama等人,IEEE语音合成研讨会,2002)。这里考虑的基本单位是CV, VC, VCV, VCCV和VCCC,其中C代表辅音,V代表任何元音。在第一种方法中,我们使用基于子空间的方法进行元音-辅音分割。它使用定向主成分分析(OPCA),其中测试特征向量被投影到V和C子空间上。通过将测试基本单元投影到V和C子空间上获得的规范轮廓的交叉给出了分割点,这反过来有助于识别测试基本单元的V和C持续时间。在第二种方法中,我们使用概率主成分分析(PPCA)来获得V和c的概率模型,然后使用Neymen-Pearson (NP)检验将基本单元分割为V和c。最后,我们证明假设检验是V- c分割的能量检测器,类似于第一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Script to speech conversion for Marathi language Parameter optimization and rule base selection for fuzzy impulse filters using evolutionary algorithms VHDL based design of an FDWT processor High frequency industrial power supplies using inductor alternators driven by bio-mass gasifier based systems Adaptive estimation of parameters using partial information of desired outputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1