Low power and highly precise closed-loop driving circuits for piezoelectric micromirrors with embedded capacitive position sensors

SPIE OPTO Pub Date : 2016-03-15 DOI:10.1117/12.2209573
S. Rombach, M. Marx, S. Gu-Stoppel, Y. Manoli
{"title":"Low power and highly precise closed-loop driving circuits for piezoelectric micromirrors with embedded capacitive position sensors","authors":"S. Rombach, M. Marx, S. Gu-Stoppel, Y. Manoli","doi":"10.1117/12.2209573","DOIUrl":null,"url":null,"abstract":"This work presents an integrated closed-loop driving circuit for previously reported PZT resonant micro-mirrors, which is based on embedded capacitive position sensors for minimizing the system footprint. Signals with a high SNR of 84 dB were measured, when the mechanical scan angle of the micro-mirror was 2◦, so that high controlling resolution of 14 bit for the complete motion range of the mirror is enabled. The total power consumption of the closed-loop system is only 0.86mW. Measurement results of the closed-loop driven micromirror system are presented, demonstrating its competitiveness due to the great reliability, high precision and low-power consumption. Additionally, the implementation and performance of a self-resonant loop is discussed. Finally, the fabrication, temperature dependency and performance of embedded capacitive position sensors for single and dual axis PZT resonant micro-mirrors is evaluated and presented.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE OPTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2209573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This work presents an integrated closed-loop driving circuit for previously reported PZT resonant micro-mirrors, which is based on embedded capacitive position sensors for minimizing the system footprint. Signals with a high SNR of 84 dB were measured, when the mechanical scan angle of the micro-mirror was 2◦, so that high controlling resolution of 14 bit for the complete motion range of the mirror is enabled. The total power consumption of the closed-loop system is only 0.86mW. Measurement results of the closed-loop driven micromirror system are presented, demonstrating its competitiveness due to the great reliability, high precision and low-power consumption. Additionally, the implementation and performance of a self-resonant loop is discussed. Finally, the fabrication, temperature dependency and performance of embedded capacitive position sensors for single and dual axis PZT resonant micro-mirrors is evaluated and presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入式电容式位置传感器压电微镜的低功耗高精度闭环驱动电路
本工作提出了一种集成闭环驱动电路,用于先前报道的PZT谐振微镜,该电路基于嵌入式电容式位置传感器,以最大限度地减少系统占用空间。当微镜的机械扫描角度为2◦时,测量了84 dB的高信噪比信号,从而使微镜的整个运动范围具有14位的高控制分辨率。闭环系统总功耗仅为0.86mW。给出了闭环驱动微镜系统的测量结果,证明了该系统具有高可靠性、高精度和低功耗的竞争力。此外,还讨论了自谐振回路的实现和性能。最后,对单轴和双轴PZT谐振微镜的嵌入式电容式位置传感器的制作、温度依赖性和性能进行了评价和介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silent images in dialogue Integrating III-V, Si, and polymer waveguides for optical interconnects: RAPIDO Quantum nonlinear optics: nonlinear optics meets the quantum world (Conference Presentation) Merging photonics with nanoelectronics (Conference Presentation) Generic heterogeneously integrated III-V lasers-on-chip with metal-coated etched-mirror
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1