Bloat control in genetic programming by evaluating contribution of nodes

A. Song, Dunhai Chen, Mengjie Zhang
{"title":"Bloat control in genetic programming by evaluating contribution of nodes","authors":"A. Song, Dunhai Chen, Mengjie Zhang","doi":"10.1145/1569901.1570221","DOIUrl":null,"url":null,"abstract":"Unnecessary growth in program size is known as bloat problem in Genetic Programming. There are a large number of studies addressing this problem. In this paper, we propose an effective bloat control mechanism which is based on examining the contribution of each function node in the selected programs. Nodes without contribution will be removed before generating offspring. The results show that the method can significantly reduce program size without compromising fitness. Furthermore it speeds up evolution processes because of the saving in evaluation costs.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Unnecessary growth in program size is known as bloat problem in Genetic Programming. There are a large number of studies addressing this problem. In this paper, we propose an effective bloat control mechanism which is based on examining the contribution of each function node in the selected programs. Nodes without contribution will be removed before generating offspring. The results show that the method can significantly reduce program size without compromising fitness. Furthermore it speeds up evolution processes because of the saving in evaluation costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于节点贡献的遗传规划膨胀控制
在遗传规划中,程序大小的不必要增长被称为膨胀问题。有大量的研究针对这个问题。在本文中,我们提出了一种有效的膨胀控制机制,该机制基于检查所选程序中每个功能节点的贡献。没有贡献的节点将在产生后代之前被移除。结果表明,该方法可以在不影响适应度的情况下显著减小程序大小。此外,由于节省了评估成本,它加快了进化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1