USPTO Patent Prosecution Research Data: Unlocking Office Action Traits

Qiang Lu, Amanda F. Myers, Scott Beliveau
{"title":"USPTO Patent Prosecution Research Data: Unlocking Office Action Traits","authors":"Qiang Lu, Amanda F. Myers, Scott Beliveau","doi":"10.2139/SSRN.3024621","DOIUrl":null,"url":null,"abstract":"Release of the United States Patent and Trademark Office (USPTO) Office Action Research Dataset for Patents marks the first time that comprehensive data on examiner-issued rejections are readily available to the research community. An “Office action” is a written notification to the applicant of the examiner’s decision on patentability and generally discloses information, such as the grounds for a rejection, the claims affected, and the pertinent prior art. The relative inaccessibility of Office actions and the considerable effort required to obtain meaningful data therefrom has largely prevented researchers from fully exploiting this valuable information. We aim to rectify this situation by using natural language processing and machine learning techniques to systematically extract information from Office actions and construct a relational database of key data elements. This paper describes our methods and provides an overview of the main data files and variables. This data release consists of three files derived from 4.4 million Office actions mailed during the 2008 to mid-2017 period from USPTO examiners to the applicants of 2.2 million unique patent applications.","PeriodicalId":246105,"journal":{"name":"US Patent & Trademark Office (USPTO) Economic Research Paper Series","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"US Patent & Trademark Office (USPTO) Economic Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.3024621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Release of the United States Patent and Trademark Office (USPTO) Office Action Research Dataset for Patents marks the first time that comprehensive data on examiner-issued rejections are readily available to the research community. An “Office action” is a written notification to the applicant of the examiner’s decision on patentability and generally discloses information, such as the grounds for a rejection, the claims affected, and the pertinent prior art. The relative inaccessibility of Office actions and the considerable effort required to obtain meaningful data therefrom has largely prevented researchers from fully exploiting this valuable information. We aim to rectify this situation by using natural language processing and machine learning techniques to systematically extract information from Office actions and construct a relational database of key data elements. This paper describes our methods and provides an overview of the main data files and variables. This data release consists of three files derived from 4.4 million Office actions mailed during the 2008 to mid-2017 period from USPTO examiners to the applicants of 2.2 million unique patent applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
USPTO专利审查研究数据:解锁办公室行为特征
美国专利商标局(USPTO)的专利行动研究数据集的发布标志着审查员发布的拒绝的综合数据第一次可以随时向研究界提供。“专利局诉讼”是向申请人发出的关于审查员对可专利性决定的书面通知,通常会披露信息,例如拒绝的理由、受影响的权利要求和相关的现有技术。由于办公室的行动相对难以获得,而且需要付出相当大的努力才能从中获得有意义的数据,这在很大程度上阻碍了研究人员充分利用这些宝贵的资料。我们的目标是通过使用自然语言处理和机器学习技术系统地从Office操作中提取信息,并构建关键数据元素的关系数据库来纠正这种情况。本文描述了我们的方法,并提供了主要数据文件和变量的概述。该数据由三个文件组成,这些文件来自2008年至2017年年中期间USPTO审查员邮寄给220万份独特专利申请申请人的440万份办公室诉讼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatentsView: An Open Data Platform to Advance Science and Technology Policy Using Intellectual Property Data to Measure Cross-border Knowledge Flows USPTO Patent Prosecution Research Data: Unlocking Office Action Traits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1