首页 > 最新文献

US Patent & Trademark Office (USPTO) Economic Research Paper Series最新文献

英文 中文
PatentsView: An Open Data Platform to Advance Science and Technology Policy PatentsView:推进科技政策的开放数据平台
Pub Date : 2021-06-01 DOI: 10.2139/ssrn.3874213
Andrew A. Toole, Christina Jones, Sarvothaman Madhavan
What are the connections between science and improvements in economic and social outcomes that drive the “value” of science? Most of the time, these connections are circuitous, varied, diffuse, and opaque. Patent data offer an opportunity to expose new connections between science and technology as well as exposing links to downstream economic and social outcomes. The PatentsView open data platform performs data preparation, visualization, and adds helpful features to USPTO’s administrative data. PatentsView is fundamentally a free “intermediate good” that provides the needed materials for researchers, policymakers, and students to conduct their own analyses, make their own linkages, and derive their own insights. This paper provides a quick tour of the PatentsView platform.
科学与推动科学“价值”的经济和社会成果的改善之间有什么联系?大多数时候,这些联系是迂回的、多样的、分散的、不透明的。专利数据为揭示科学与技术之间的新联系以及与下游经济和社会成果之间的联系提供了机会。PatentsView开放数据平台执行数据准备、可视化,并为USPTO的管理数据添加有用的功能。从根本上说,PatentsView是一种免费的“中间产品”,它为研究人员、政策制定者和学生提供所需的材料,以便他们进行自己的分析,建立自己的联系,并得出自己的见解。本文简要介绍了PatentsView平台。
{"title":"PatentsView: An Open Data Platform to Advance Science and Technology Policy","authors":"Andrew A. Toole, Christina Jones, Sarvothaman Madhavan","doi":"10.2139/ssrn.3874213","DOIUrl":"https://doi.org/10.2139/ssrn.3874213","url":null,"abstract":"What are the connections between science and improvements in economic and social outcomes that drive the “value” of science? Most of the time, these connections are circuitous, varied, diffuse, and opaque. Patent data offer an opportunity to expose new connections between science and technology as well as exposing links to downstream economic and social outcomes. The PatentsView open data platform performs data preparation, visualization, and adds helpful features to USPTO’s administrative data. PatentsView is fundamentally a free “intermediate good” that provides the needed materials for researchers, policymakers, and students to conduct their own analyses, make their own linkages, and derive their own insights. This paper provides a quick tour of the PatentsView platform.","PeriodicalId":246105,"journal":{"name":"US Patent & Trademark Office (USPTO) Economic Research Paper Series","volume":"268 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132697306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Using Intellectual Property Data to Measure Cross-border Knowledge Flows 利用知识产权数据衡量跨境知识流动
Pub Date : 2019-03-01 DOI: 10.2139/ssrn.3386326
Jake Dubbert, Alexander V. Giczy, Nicholas A. Pairolero, Andrew A. Toole
This paper surveys the landscape of empirical studies on cross-border trade in knowledge that use IPRs data. Based on a thorough search of the literature, we identify and categorize the types and uses of IPRs data. Our discussion critically evaluates whether these data support the empirical findings in the studies by identifying where IPRs data are particularly useful and where these data have limitations. The final section of the paper discusses the potential value of making greater use of IPRs assignment data. The goal is to provide a reference to help policymakers evaluate the trade in knowledge literature, particularly the interpretation of IPRs-based evidence for policy decisions.
本文概述了利用知识产权数据进行跨境知识贸易实证研究的现状。在对文献进行全面检索的基础上,我们对知识产权数据的类型和用途进行了识别和分类。我们的讨论通过确定知识产权数据在哪些方面特别有用以及这些数据在哪些方面存在局限性,批判性地评估了这些数据是否支持研究中的实证结果。本文的最后一部分讨论了更多地利用知识产权分配数据的潜在价值。目标是提供一个参考,帮助决策者评估知识文献的交易,特别是对基于知识产权的证据的决策解释。
{"title":"Using Intellectual Property Data to Measure Cross-border Knowledge Flows","authors":"Jake Dubbert, Alexander V. Giczy, Nicholas A. Pairolero, Andrew A. Toole","doi":"10.2139/ssrn.3386326","DOIUrl":"https://doi.org/10.2139/ssrn.3386326","url":null,"abstract":"This paper surveys the landscape of empirical studies on cross-border trade in knowledge that use IPRs data. Based on a thorough search of the literature, we identify and categorize the types and uses of IPRs data. Our discussion critically evaluates whether these data support the empirical findings in the studies by identifying where IPRs data are particularly useful and where these data have limitations. The final section of the paper discusses the potential value of making greater use of IPRs assignment data. The goal is to provide a reference to help policymakers evaluate the trade in knowledge literature, particularly the interpretation of IPRs-based evidence for policy decisions.","PeriodicalId":246105,"journal":{"name":"US Patent & Trademark Office (USPTO) Economic Research Paper Series","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123767385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USPTO Patent Prosecution Research Data: Unlocking Office Action Traits USPTO专利审查研究数据:解锁办公室行为特征
Pub Date : 2017-11-20 DOI: 10.2139/SSRN.3024621
Qiang Lu, Amanda F. Myers, Scott Beliveau
Release of the United States Patent and Trademark Office (USPTO) Office Action Research Dataset for Patents marks the first time that comprehensive data on examiner-issued rejections are readily available to the research community. An “Office action” is a written notification to the applicant of the examiner’s decision on patentability and generally discloses information, such as the grounds for a rejection, the claims affected, and the pertinent prior art. The relative inaccessibility of Office actions and the considerable effort required to obtain meaningful data therefrom has largely prevented researchers from fully exploiting this valuable information. We aim to rectify this situation by using natural language processing and machine learning techniques to systematically extract information from Office actions and construct a relational database of key data elements. This paper describes our methods and provides an overview of the main data files and variables. This data release consists of three files derived from 4.4 million Office actions mailed during the 2008 to mid-2017 period from USPTO examiners to the applicants of 2.2 million unique patent applications.
美国专利商标局(USPTO)的专利行动研究数据集的发布标志着审查员发布的拒绝的综合数据第一次可以随时向研究界提供。“专利局诉讼”是向申请人发出的关于审查员对可专利性决定的书面通知,通常会披露信息,例如拒绝的理由、受影响的权利要求和相关的现有技术。由于办公室的行动相对难以获得,而且需要付出相当大的努力才能从中获得有意义的数据,这在很大程度上阻碍了研究人员充分利用这些宝贵的资料。我们的目标是通过使用自然语言处理和机器学习技术系统地从Office操作中提取信息,并构建关键数据元素的关系数据库来纠正这种情况。本文描述了我们的方法,并提供了主要数据文件和变量的概述。该数据由三个文件组成,这些文件来自2008年至2017年年中期间USPTO审查员邮寄给220万份独特专利申请申请人的440万份办公室诉讼。
{"title":"USPTO Patent Prosecution Research Data: Unlocking Office Action Traits","authors":"Qiang Lu, Amanda F. Myers, Scott Beliveau","doi":"10.2139/SSRN.3024621","DOIUrl":"https://doi.org/10.2139/SSRN.3024621","url":null,"abstract":"Release of the United States Patent and Trademark Office (USPTO) Office Action Research Dataset for Patents marks the first time that comprehensive data on examiner-issued rejections are readily available to the research community. An “Office action” is a written notification to the applicant of the examiner’s decision on patentability and generally discloses information, such as the grounds for a rejection, the claims affected, and the pertinent prior art. The relative inaccessibility of Office actions and the considerable effort required to obtain meaningful data therefrom has largely prevented researchers from fully exploiting this valuable information. We aim to rectify this situation by using natural language processing and machine learning techniques to systematically extract information from Office actions and construct a relational database of key data elements. This paper describes our methods and provides an overview of the main data files and variables. This data release consists of three files derived from 4.4 million Office actions mailed during the 2008 to mid-2017 period from USPTO examiners to the applicants of 2.2 million unique patent applications.","PeriodicalId":246105,"journal":{"name":"US Patent & Trademark Office (USPTO) Economic Research Paper Series","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125732489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
期刊
US Patent & Trademark Office (USPTO) Economic Research Paper Series
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1