E. Kussener, J. Aguilar, O. Mainard, D. Goguenheim, G. Oudinet, P. Salin, C. Forni
{"title":"Implantable electrostimulation system in freely moving rodent for DBS treatment","authors":"E. Kussener, J. Aguilar, O. Mainard, D. Goguenheim, G. Oudinet, P. Salin, C. Forni","doi":"10.1109/FTFC.2014.6828596","DOIUrl":null,"url":null,"abstract":"A large number of solutions on electrostimulation were proposed in the last twenty years with the aim of looking after certain pathologies. They rely on the principle that electrostimulation of a neuron, muscle or another internal nerve is possible. In this context, this paper presents a solution of deep brain stimulator (DBS) having for aim to reduce the influence of the Parkinson's disease. This paper presents monophasic and biphasic electrostimulation topologies. The integrated system on chip solution was developped on 0.35¿m standard CMOS technology. The silicon die possesses a size of 620x550¿m2, with an improved battery life of about a week (ten times longer than the discrete version). The circuit has two terminals directly connected on the brain via two electrodes and two terminals to be connected to the coin cell battery (the only non under cutaneous part).","PeriodicalId":138166,"journal":{"name":"2014 IEEE Faible Tension Faible Consommation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Faible Tension Faible Consommation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTFC.2014.6828596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A large number of solutions on electrostimulation were proposed in the last twenty years with the aim of looking after certain pathologies. They rely on the principle that electrostimulation of a neuron, muscle or another internal nerve is possible. In this context, this paper presents a solution of deep brain stimulator (DBS) having for aim to reduce the influence of the Parkinson's disease. This paper presents monophasic and biphasic electrostimulation topologies. The integrated system on chip solution was developped on 0.35¿m standard CMOS technology. The silicon die possesses a size of 620x550¿m2, with an improved battery life of about a week (ten times longer than the discrete version). The circuit has two terminals directly connected on the brain via two electrodes and two terminals to be connected to the coin cell battery (the only non under cutaneous part).