A new Feature Reduction Algorithm Based on Fuzzy Rough Relation for the Multi-label Classification

P. Huyen, Ho Thuan
{"title":"A new Feature Reduction Algorithm Based on Fuzzy Rough Relation for the Multi-label Classification","authors":"P. Huyen, Ho Thuan","doi":"10.25073/2588-1086/VNUCSCE.238","DOIUrl":null,"url":null,"abstract":"The paper aims to improve the multi-label classification performance using the feature reduction technique. According to the determination of the dependency among features based on fuzzy rough relation, features with the highest dependency score will be retained in the reduction set. The set is subsequently applied to enhance the performance of the multi-label classifier. We investigate the effectiveness of the proposed model againts the baseline via time complexity. \nKeywords: \nFuzzy rough relation, label-specific feature, feature reduction set \nReferences \n[1] Richard Jensen, Chris Cornelis, Fuzzy-Rough Nearest Neighbor Classification and Prediction. Proceedings of the 6th International Conference on Rough Sets and Current Trends in Computing, 2011, 310-319. \n[2] Y.H. Qian, Q. Wang, H.H. Cheng, J.Y. Liang, C.Y. Dang, Fuzzy-Rough feature selection accelerator, Fuzzy Sets Syst. 258 (2014) 61-78. \n[3] Quang-Thuy Ha, Thi-Ngan Pham, Van-Quang Nguyen, Minh-Chau Nguyen, Thanh-Huyen Pham, Tri-Thanh Nguyen, A New Text Semi-supervised Multi-label Learning Model Based on Using the Label-Feature Relations, International Conference on Computational Collective Intelligence, LNAI 11055, Springer, 2018, pp. 403-413. \n[4] Daniel Kostrzewa, Robert Brzeski, The data Dimensionality Reduction and Feature Weighting in the Classification Process Using Forest Optimization Algorithm, ACIIDS, 2019, pp. 97-108. \n[5] Nele Verbiest, Fuzzy Rough and Evolutionary Approaches to Instance Selection, PhD Thesis, Ghent University, 2014. \n[6] Y. Yu, W. Pedrycz, D.Q. Miao, Multi-label classification by exploiting label correlations, Expert syst, Appl. 41 (2014) 2989-3004. \n[7] M.L. Zhang, LIFT: Multi-label learning with label-specific features, IEEE Trans, Pattern Anal, Mach, Intell 37 (2015) 107-120. \n[8] Suping Xu, Xibei Yang, Hualong Yu, Dong-Jun Yu, Jingyu Yang, Eric CC Tsang, Multi-label learning with label-specific feature reduction, Knowledge-Based Systems 104 (2016) 52-61. https://doi.org/10.1080/24751839.2017.1364925. \n[9] Thi-Ngan Pham, Van-Quang Nguyen, Van-Hien Tran, Tri-Thanh Nguyen, Quang-Thuy Ha, A Semi-supervised multi-label classification framework with feature reduction and enrichment, Journal of Information and Telecommunication 1(4) (2017) 305-318. \n[10] M. Ghaemi, M.R. Feizi-Derakhshi, Feature selection using forest optimization algorithm, Pattern Recognition 60 (2016) 121-129. \n[11] M.L. Zhang, Z.H. Zhou, ML-KNN: A lazy learning approach to multi-label learning, Pattern Recognition 40 (2007) 2038-2048. \n[12] M.Z. Ahmad, M.K. Hasan, A New Approach for Computing Zadeh's Extension Principle, MATEMATIKA. 26(1) (2010) 71-81. \n[13] Richard Jensen, Neil Mac Parthaláin and Qiang Shen. Fuzzy-rough data mining (using the Weka data mining suite), A Tutorial, IEEE WCCI 2014, Beijing, China, July 6, 2014. \n[14] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (1990) 191-209.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/VNUCSCE.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper aims to improve the multi-label classification performance using the feature reduction technique. According to the determination of the dependency among features based on fuzzy rough relation, features with the highest dependency score will be retained in the reduction set. The set is subsequently applied to enhance the performance of the multi-label classifier. We investigate the effectiveness of the proposed model againts the baseline via time complexity. Keywords: Fuzzy rough relation, label-specific feature, feature reduction set References [1] Richard Jensen, Chris Cornelis, Fuzzy-Rough Nearest Neighbor Classification and Prediction. Proceedings of the 6th International Conference on Rough Sets and Current Trends in Computing, 2011, 310-319. [2] Y.H. Qian, Q. Wang, H.H. Cheng, J.Y. Liang, C.Y. Dang, Fuzzy-Rough feature selection accelerator, Fuzzy Sets Syst. 258 (2014) 61-78. [3] Quang-Thuy Ha, Thi-Ngan Pham, Van-Quang Nguyen, Minh-Chau Nguyen, Thanh-Huyen Pham, Tri-Thanh Nguyen, A New Text Semi-supervised Multi-label Learning Model Based on Using the Label-Feature Relations, International Conference on Computational Collective Intelligence, LNAI 11055, Springer, 2018, pp. 403-413. [4] Daniel Kostrzewa, Robert Brzeski, The data Dimensionality Reduction and Feature Weighting in the Classification Process Using Forest Optimization Algorithm, ACIIDS, 2019, pp. 97-108. [5] Nele Verbiest, Fuzzy Rough and Evolutionary Approaches to Instance Selection, PhD Thesis, Ghent University, 2014. [6] Y. Yu, W. Pedrycz, D.Q. Miao, Multi-label classification by exploiting label correlations, Expert syst, Appl. 41 (2014) 2989-3004. [7] M.L. Zhang, LIFT: Multi-label learning with label-specific features, IEEE Trans, Pattern Anal, Mach, Intell 37 (2015) 107-120. [8] Suping Xu, Xibei Yang, Hualong Yu, Dong-Jun Yu, Jingyu Yang, Eric CC Tsang, Multi-label learning with label-specific feature reduction, Knowledge-Based Systems 104 (2016) 52-61. https://doi.org/10.1080/24751839.2017.1364925. [9] Thi-Ngan Pham, Van-Quang Nguyen, Van-Hien Tran, Tri-Thanh Nguyen, Quang-Thuy Ha, A Semi-supervised multi-label classification framework with feature reduction and enrichment, Journal of Information and Telecommunication 1(4) (2017) 305-318. [10] M. Ghaemi, M.R. Feizi-Derakhshi, Feature selection using forest optimization algorithm, Pattern Recognition 60 (2016) 121-129. [11] M.L. Zhang, Z.H. Zhou, ML-KNN: A lazy learning approach to multi-label learning, Pattern Recognition 40 (2007) 2038-2048. [12] M.Z. Ahmad, M.K. Hasan, A New Approach for Computing Zadeh's Extension Principle, MATEMATIKA. 26(1) (2010) 71-81. [13] Richard Jensen, Neil Mac Parthaláin and Qiang Shen. Fuzzy-rough data mining (using the Weka data mining suite), A Tutorial, IEEE WCCI 2014, Beijing, China, July 6, 2014. [14] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (1990) 191-209.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于模糊粗糙关系的多标签分类特征约简算法
本文旨在利用特征约简技术提高多标签分类性能。根据模糊粗糙关系确定特征之间的依赖关系,将依赖分数最高的特征保留在约简集中。随后应用该集合来增强多标签分类器的性能。我们通过时间复杂度来考察所提出的模型对基线的有效性。关键词:模糊粗糙关系,标签特定特征,特征约简集参考文献b[1] Richard Jensen, Chris Cornelis,模糊粗糙近邻分类与预测。第六届粗糙集国际会议论文集,2011,310-319。[10]钱永辉,王琪,程红辉,梁建银,党长云,模糊粗糙特征选择加速器,模糊集系统,2014,31(1):61-78。[1]胡广辉,范志刚,范文光,阮明周,一种基于标签-特征关系的文本半监督多标签学习模型,中文信息学报,2018,pp. 407 -413。[10]张晓明,张晓明,基于森林优化算法的数据降维和特征加权,林业科学学报,2019,pp. 97-108。[10] Nele Verbiest,模糊粗糙进化方法在实例选择中的应用,博士论文,根特大学,2014。[10]于玉玉,缪德清,基于标签相关性的多标签分类,中文信息学报,41(2014):2989-3004。[10]张明亮,基于多标签学习的多标签学习,中文信息学报,vol . 32(2015): 107-120。[10]徐素平,杨西贝,于华龙,于东军,杨景宇,曾志成,基于多标签特征约简的多标签学习,中文信息学报,2016,32(1):52-61。https://doi.org/10.1080/24751839.2017.1364925。[10]范世彦,陈文贤,陈文光,一种基于特征约简的半监督多标签分类框架,信息通信学报(4)(2017)305-318。[10] M. Ghaemi, M. Feizi-Derakhshi,基于森林优化算法的特征选择,模式识别,60(2016)121-129。[10]张明亮,周志辉,周志明,张志明:一种多标签学习的懒惰学习方法,模式识别,40(2007):2038-2048。[10] M.Z. Ahmad, M.K. Hasan,一种计算Zadeh扩展原理的新方法,数学学报。26(1)(2010) 71-81。[13] Richard Jensen, Neil Mac Parthaláin和沈强。模糊粗糙数据挖掘(使用Weka数据挖掘套件),IEEE WCCI 2014 A教程,2014年7月6日,中国北京。[10] D.杜波依斯,H.普拉德,模糊粗糙集与模糊粗糙集,英。司法总编17(1990)191-209。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers A Bandwidth-Efficient High-Performance RTL-Microarchitecture of 2D-Convolution for Deep Neural Networks Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network FRSL: A Domain Specific Language to Specify Functional Requirements A Contract-Based Specification Method for Model Transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1