Epilepsy Identification System with Neural Network Hardware Implementation

Chieh Tsou, Chi-Chung Liao, Shuenn-Yuh Lee
{"title":"Epilepsy Identification System with Neural Network Hardware Implementation","authors":"Chieh Tsou, Chi-Chung Liao, Shuenn-Yuh Lee","doi":"10.1109/AICAS.2019.8771529","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time identification system for epilepsy detection with a neural network (NN) classifier. The identification flow of the proposed system in animal testing is described as follows: 1. Two channel signals are collected from mouse brain. 2. Original signals are filtered in the appropriate bandwidth. 3. Six feature values are calculated. 4. Normal and epilepsy are classified by the classifier. The electroencephalography signal is measured from C57BL/6 mice in animal testing with a sampling rate of 400 Hz. The proposed system is verified on software design and hardware implementation. The software is designed in Matlab, and the hardware is implemented by the field programmable gate array (FPGA) platform. The chip is fabricated with TSMC 0.18 μm CMOS technology. The feature extraction function is realized in FPGA, and the NN architecture is implemented with a chip. The chosen feature sets from the previous measured animal testing data are amplitude, frequency bins, approximate entropy, and standard deviation. The accuracies of the proposed system are approximately 98.76% and 89.88% on software verification and hardware implementation, respectively. Results reveal that the proposed architecture is effective for epilepsy recognition.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"439 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a real-time identification system for epilepsy detection with a neural network (NN) classifier. The identification flow of the proposed system in animal testing is described as follows: 1. Two channel signals are collected from mouse brain. 2. Original signals are filtered in the appropriate bandwidth. 3. Six feature values are calculated. 4. Normal and epilepsy are classified by the classifier. The electroencephalography signal is measured from C57BL/6 mice in animal testing with a sampling rate of 400 Hz. The proposed system is verified on software design and hardware implementation. The software is designed in Matlab, and the hardware is implemented by the field programmable gate array (FPGA) platform. The chip is fabricated with TSMC 0.18 μm CMOS technology. The feature extraction function is realized in FPGA, and the NN architecture is implemented with a chip. The chosen feature sets from the previous measured animal testing data are amplitude, frequency bins, approximate entropy, and standard deviation. The accuracies of the proposed system are approximately 98.76% and 89.88% on software verification and hardware implementation, respectively. Results reveal that the proposed architecture is effective for epilepsy recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络癫痫识别系统的硬件实现
提出了一种基于神经网络分类器的癫痫实时识别系统。拟建系统在动物试验中的识别流程描述如下:从小鼠大脑中采集两个通道信号。2. 原始信号被过滤在适当的带宽。3.计算六个特征值。4. 正常和癫痫由分类器分类。动物实验中C57BL/6小鼠的脑电图信号采集,采样率为400hz。从软件设计和硬件实现两方面验证了该系统的可行性。软件采用Matlab进行设计,硬件采用现场可编程门阵列(FPGA)平台实现。该芯片采用台积电0.18 μm CMOS工艺制造。在FPGA上实现了特征提取功能,用芯片实现了神经网络架构。从先前测量的动物试验数据中选择的特征集是振幅,频率箱,近似熵和标准差。该系统在软件验证和硬件实现上的准确率分别约为98.76%和89.88%。结果表明,该结构对癫痫的识别是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1