{"title":"Receiver side control for efficient inductive power transfer for vehicle recharging","authors":"M. Afshin, A. Rathore","doi":"10.1109/ITEC-INDIA.2017.8333897","DOIUrl":null,"url":null,"abstract":"This paper presents a new wireless inductive power transfer topology using half bridge current fed converter and a full bridge active single phase rectifier. Generally, the efficiency of inductive power transfer system is lower than the wired system due to higher power loss in Inductive Power Transfer coils. The proposed converter reduces this limitations and shows more than 4% overall efficiency improvement compare with the existing system in battery charging of low-voltage light-load electrical vehicles such as golf carts etc. This is realized by synchronous rectification technique of the vehicle side converter. Simulation results obtained from Matlab Simulink are reported to validate the analysis and performance of the proposed converter. A scale-down 250 W lab prototype is developed and experimental results are presented to verify the comparative study results","PeriodicalId":312418,"journal":{"name":"2017 IEEE Transportation Electrification Conference (ITEC-India)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Transportation Electrification Conference (ITEC-India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC-INDIA.2017.8333897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a new wireless inductive power transfer topology using half bridge current fed converter and a full bridge active single phase rectifier. Generally, the efficiency of inductive power transfer system is lower than the wired system due to higher power loss in Inductive Power Transfer coils. The proposed converter reduces this limitations and shows more than 4% overall efficiency improvement compare with the existing system in battery charging of low-voltage light-load electrical vehicles such as golf carts etc. This is realized by synchronous rectification technique of the vehicle side converter. Simulation results obtained from Matlab Simulink are reported to validate the analysis and performance of the proposed converter. A scale-down 250 W lab prototype is developed and experimental results are presented to verify the comparative study results