{"title":"BMF-BD: Bayesian model fusion on Bernoulli distribution for efficient yield estimation of integrated circuits","authors":"Chenlei Fang, Fan Yang, Xuan Zeng, Xin Li","doi":"10.1145/2593069.2593099","DOIUrl":null,"url":null,"abstract":"Accurate yield estimation is one of the important yet challenging tasks for both pre-silicon verification and post-silicon validation. In this paper, we propose a novel method of Bayesian model fusion on Bernoulli distribution (BMF-BD) for efficient yield estimation at the late stage by borrowing the prior knowledge from an early stage. BMF-BD is particularly developed to handle the cases where the pre-silicon simulation and/or post-silicon measurement results are binary: either “pass” or “fail”. The key idea is to model the binary simulation/measurement outcome as a Bernoulli distribution and then encode the prior knowledge as a Beta distribution based on the theory of conjugate prior. As such, the late-stage yield can be accurately estimated through Bayesian inference with very few late-stage samples. Several circuit examples demonstrate that BMF-BD achieves up to 10× cost reduction over the conventional estimator without surrendering any accuracy.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"452 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Accurate yield estimation is one of the important yet challenging tasks for both pre-silicon verification and post-silicon validation. In this paper, we propose a novel method of Bayesian model fusion on Bernoulli distribution (BMF-BD) for efficient yield estimation at the late stage by borrowing the prior knowledge from an early stage. BMF-BD is particularly developed to handle the cases where the pre-silicon simulation and/or post-silicon measurement results are binary: either “pass” or “fail”. The key idea is to model the binary simulation/measurement outcome as a Bernoulli distribution and then encode the prior knowledge as a Beta distribution based on the theory of conjugate prior. As such, the late-stage yield can be accurately estimated through Bayesian inference with very few late-stage samples. Several circuit examples demonstrate that BMF-BD achieves up to 10× cost reduction over the conventional estimator without surrendering any accuracy.