{"title":"Area-driven partial reconfiguration for SEU mitigation on SRAM-based FPGAs","authors":"M. Vavouras, C. Bouganis","doi":"10.1109/ReConFig.2016.7857154","DOIUrl":null,"url":null,"abstract":"This paper presents an area-driven Field-Programmable Gate Array (FPGA) scrubbing technique based on partial reconfiguration for Single Event Upset (SEU) mitigation. The proposed method is compared with existing techniques such as blind and on-demand scrubbing on a novel SEU mitigation framework implemented on the ZYNQ platform, supporting various SEU and scrubbing rates. A design space exploration on the availability versus data transfers from a Double Data Rate Type 3 (DDR3) memory, shows that our approach outperforms blind scrubbing for a range of availability values when a second order polynomial IP is targeted. A comparison to an existing on-demand scrubbing technique based on Dual Modular Redundancy (DMR) shows that our approach saves up to 46% area for the same case study.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents an area-driven Field-Programmable Gate Array (FPGA) scrubbing technique based on partial reconfiguration for Single Event Upset (SEU) mitigation. The proposed method is compared with existing techniques such as blind and on-demand scrubbing on a novel SEU mitigation framework implemented on the ZYNQ platform, supporting various SEU and scrubbing rates. A design space exploration on the availability versus data transfers from a Double Data Rate Type 3 (DDR3) memory, shows that our approach outperforms blind scrubbing for a range of availability values when a second order polynomial IP is targeted. A comparison to an existing on-demand scrubbing technique based on Dual Modular Redundancy (DMR) shows that our approach saves up to 46% area for the same case study.