Application of time-series and Artificial Neural Network models in short term load forecasting for scheduling of storage devices

K. Ahmed, M. Ampatzis, P. Nguyen, W. Kling
{"title":"Application of time-series and Artificial Neural Network models in short term load forecasting for scheduling of storage devices","authors":"K. Ahmed, M. Ampatzis, P. Nguyen, W. Kling","doi":"10.1109/UPEC.2014.6934761","DOIUrl":null,"url":null,"abstract":"In the context of the smart grid, scheduling residential energy storage device is necessary to optimize technical and market integration of distributed energy resources (DERs), especially the ones based on renewable energy. The first step to achieve proper scheduling of the storage devices is electricity consumption forecasting at individual household level. This paper compares the forecasting ability of Artificial Neural Network (ANN) and AutoRegressive Integrated Moving Average (ARIMA) model. The benefit of proper storage scheduling is demonstrated via a use-case. The work is a part of a project focused on photovoltaic generation with integrated energy storage at household level. The methods under study attempt to capture the daily electricity consumption profile of an individual household.","PeriodicalId":414838,"journal":{"name":"2014 49th International Universities Power Engineering Conference (UPEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 49th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2014.6934761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In the context of the smart grid, scheduling residential energy storage device is necessary to optimize technical and market integration of distributed energy resources (DERs), especially the ones based on renewable energy. The first step to achieve proper scheduling of the storage devices is electricity consumption forecasting at individual household level. This paper compares the forecasting ability of Artificial Neural Network (ANN) and AutoRegressive Integrated Moving Average (ARIMA) model. The benefit of proper storage scheduling is demonstrated via a use-case. The work is a part of a project focused on photovoltaic generation with integrated energy storage at household level. The methods under study attempt to capture the daily electricity consumption profile of an individual household.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列和人工神经网络模型在存储设备调度短期负荷预测中的应用
在智能电网的背景下,对住宅储能设备进行调度是优化分布式能源,特别是基于可再生能源的分布式能源的技术和市场整合的必要条件。实现存储设备合理调度的第一步是对个体家庭的用电量进行预测。本文比较了人工神经网络(ANN)和自回归综合移动平均(ARIMA)模型的预测能力。适当的存储调度的好处是通过一个用例来展示的。这项工作是一个项目的一部分,重点是光伏发电和家庭一级的综合储能。正在研究的方法试图捕捉单个家庭的日常电力消耗概况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transposing phasor equation into instantaneous values equations using Hilbert transform Optimal design of a hybrid distributed generation system Modelling of reduced GB transmission system in PSCAD/EMTDC Medium-voltage cable inductive coupling to metallic pipelines: A comprehensive study UPS system: How can future technology and topology improve the energy efficiency in data centers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1