A nonparametric belief solution to the Bayes tree

D. Fourie, J. Leonard, M. Kaess
{"title":"A nonparametric belief solution to the Bayes tree","authors":"D. Fourie, J. Leonard, M. Kaess","doi":"10.1109/IROS.2016.7759343","DOIUrl":null,"url":null,"abstract":"We relax parametric inference to a nonparametric representation towards more general solutions on factor graphs. We use the Bayes tree factorization to maximally exploit structure in the joint posterior thereby minimizing computation. We use kernel density estimation to represent a wider class of constraint beliefs, which naturally encapsulates multi-hypothesis and non-Gaussian inference. A variety of new uncertainty models can now be directly applied in the factor graph, and have the solver recover a potentially multi-modal posterior. For example, data association for loop closure proposals can be incorporated at inference time without further modifications to the factor graph. Our implementation of the presented algorithm is written entirely in the Julia language, exploiting high performance parallel computing. We show a larger scale use case with the well known Victoria park mapping and localization data set inferring over uncertain loop closures.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

We relax parametric inference to a nonparametric representation towards more general solutions on factor graphs. We use the Bayes tree factorization to maximally exploit structure in the joint posterior thereby minimizing computation. We use kernel density estimation to represent a wider class of constraint beliefs, which naturally encapsulates multi-hypothesis and non-Gaussian inference. A variety of new uncertainty models can now be directly applied in the factor graph, and have the solver recover a potentially multi-modal posterior. For example, data association for loop closure proposals can be incorporated at inference time without further modifications to the factor graph. Our implementation of the presented algorithm is written entirely in the Julia language, exploiting high performance parallel computing. We show a larger scale use case with the well known Victoria park mapping and localization data set inferring over uncertain loop closures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯树的非参数信念解
我们将参数推理放宽为因子图上更一般解的非参数表示。我们使用贝叶斯树分解来最大限度地利用关节后验的结构,从而最小化计算量。我们使用核密度估计来表示更广泛的约束信念,它自然地封装了多假设和非高斯推理。各种新的不确定性模型现在可以直接应用于因子图,并使求解器恢复潜在的多模态后验。例如,循环闭合建议的数据关联可以在推理时合并,而无需进一步修改因子图。我们提出的算法的实现完全用Julia语言编写,利用高性能并行计算。我们展示了一个更大规模的用例,使用众所周知的维多利亚公园地图和定位数据集来推断不确定的闭环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1