Prior Guided Segmentation and Nuclei Feature Based Abnormality Detection in Cervical Cells

Ratna Saha, M. Bajger, Gobert N. Lee
{"title":"Prior Guided Segmentation and Nuclei Feature Based Abnormality Detection in Cervical Cells","authors":"Ratna Saha, M. Bajger, Gobert N. Lee","doi":"10.1109/BIBE.2019.00139","DOIUrl":null,"url":null,"abstract":"Computer-assisted techniques for cytological analysis and abnormality detection, can help to early diagnose anomalies in cervical smear images. Cell nuclei carry substantial evidence of pre-cancerous changes, thus morphological properties of nuclei are important for accurate diagnostic decision. A novel nucleus feature-based cervical cell classification framework is proposed in this study. Prior guided segmentation algorithms are employed to accurately detect and segment nucleus. Fuzzy entropy based feature selection technique is used to select most discriminatory features, extracted from segmented nucleus. Five classifiers: k-nearest neighbor (KNN), linear discriminant analysis (LDA), Ensemble, and support vector machine with linear kernel (SVM-linear) and radial basis function kernel (SVM-RBF), are used to detect abnormality in cervical cells. The proposed framework is evaluated using Herlev dataset of 917 cervical cell images and compared with state-of-the-art methods. Results indicate that the proposed framework matches the performance of recent techniques, while segmenting nucleus and classifying Pap smear images using only 10 nucleus features. Therefore, the proposed abnormality detection framework can assist cytologists in computerized cervical cell analysis, and help with early discovery of any anomaly that may lead to cervical cancer.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Computer-assisted techniques for cytological analysis and abnormality detection, can help to early diagnose anomalies in cervical smear images. Cell nuclei carry substantial evidence of pre-cancerous changes, thus morphological properties of nuclei are important for accurate diagnostic decision. A novel nucleus feature-based cervical cell classification framework is proposed in this study. Prior guided segmentation algorithms are employed to accurately detect and segment nucleus. Fuzzy entropy based feature selection technique is used to select most discriminatory features, extracted from segmented nucleus. Five classifiers: k-nearest neighbor (KNN), linear discriminant analysis (LDA), Ensemble, and support vector machine with linear kernel (SVM-linear) and radial basis function kernel (SVM-RBF), are used to detect abnormality in cervical cells. The proposed framework is evaluated using Herlev dataset of 917 cervical cell images and compared with state-of-the-art methods. Results indicate that the proposed framework matches the performance of recent techniques, while segmenting nucleus and classifying Pap smear images using only 10 nucleus features. Therefore, the proposed abnormality detection framework can assist cytologists in computerized cervical cell analysis, and help with early discovery of any anomaly that may lead to cervical cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于先验引导分割和核特征的宫颈细胞异常检测
计算机辅助细胞学分析和异常检测技术可以帮助早期诊断宫颈涂片图像中的异常。细胞核携带癌前病变的大量证据,因此细胞核的形态学特征对准确的诊断决定是重要的。本研究提出了一种新的基于细胞核特征的宫颈细胞分类框架。采用先验引导分割算法对核进行精确检测和分割。采用基于模糊熵的特征选择技术,从分割的核中提取最具区别性的特征。采用k-最近邻(KNN)、线性判别分析(LDA)、集成(Ensemble)和线性核支持向量机(SVM-linear)和径向基函数核支持向量机(SVM-RBF)五种分类器对宫颈细胞进行异常检测。使用917个宫颈细胞图像的Herlev数据集对该框架进行了评估,并与最先进的方法进行了比较。结果表明,所提出的框架与最新技术的性能相匹配,同时仅使用10个核特征对巴氏涂片图像进行分割和分类。因此,提出的异常检测框架可以帮助细胞学家进行宫颈细胞计算机化分析,并有助于早期发现任何可能导致宫颈癌的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1