Optimal design for Flux-intensifying Permanent Magnet Machine Based on Neural Network and Multi-objective optimization

Qiang Ai, Hongqian Wei, Youtong Zhang
{"title":"Optimal design for Flux-intensifying Permanent Magnet Machine Based on Neural Network and Multi-objective optimization","authors":"Qiang Ai, Hongqian Wei, Youtong Zhang","doi":"10.1109/CVCI51460.2020.9338647","DOIUrl":null,"url":null,"abstract":"The optimization of flux-intensifying interior permanent magnet motor with the reverse salient rotor for electric vehicles is considered and explained. Firstly, the size parameters of an initial motor are selected and then the finite element model is established based on parametric variables. Secondly, to avoid the frequent usage of finite element analysis, a well-trained back propagation neural network model is used to replace the finite element model. Thirdly, the sequential unconstrained minimization technique and non-dominated sorting genetic algorithm-II algorithm are combined together to solve the multi-objective optimization solution with inequality constraints. Finally, the electric machine is reconstructed based on the optimal parameters extracted from Pareto front. The effectiveness of proposed approach is verified by the simulation results.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The optimization of flux-intensifying interior permanent magnet motor with the reverse salient rotor for electric vehicles is considered and explained. Firstly, the size parameters of an initial motor are selected and then the finite element model is established based on parametric variables. Secondly, to avoid the frequent usage of finite element analysis, a well-trained back propagation neural network model is used to replace the finite element model. Thirdly, the sequential unconstrained minimization technique and non-dominated sorting genetic algorithm-II algorithm are combined together to solve the multi-objective optimization solution with inequality constraints. Finally, the electric machine is reconstructed based on the optimal parameters extracted from Pareto front. The effectiveness of proposed approach is verified by the simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络和多目标优化的增磁永磁电机优化设计
对电动汽车用反凸转子增磁内嵌式永磁电机的优化问题进行了研究和说明。首先选取初始电机的尺寸参数,然后根据参数变量建立电机的有限元模型;其次,为避免有限元分析的频繁使用,采用训练良好的反向传播神经网络模型代替有限元模型;第三,将序列无约束最小化技术与非支配排序遗传算法- ii算法相结合,求解具有不等式约束的多目标优化解。最后,根据从Pareto前提取的最优参数对电机进行重构。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation Collision-avoidance steering control for autonomous vehicles using fast non-singular terminal sliding mode Energy management strategy based on velocity prediction for parallel plug-in hybrid electric bus Constrained Containment Control of Agents Network with Switching Topologies Multi-parameter driver intention recognition based on neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1