{"title":"Deep Convolutional Bidirectional LSTM Recurrent Neural Network for Epileptic Seizure Detection","authors":"Ahmed M. Abdelhameed, Hisham G. Daoud, M. Bayoumi","doi":"10.1109/NEWCAS.2018.8585542","DOIUrl":null,"url":null,"abstract":"Recording the brain electrical activities using Electroencephalogram (EEG) has become the most widely applied tool by physicians for the diagnosis of neurological disorders. In this paper, we propose an automatic epileptic seizure detection system based on raw EEG signals recordings. The proposed system uses a one-dimensional convolutional neural network (CNN) as a preprocessing front-end and a bidirectional long short-term memory (Bi-LSTM) recurrent neural network as a back-end. The system works efficiently on classifying raw EEG signals without the overhead of features extraction. Classification between normal and ictal cases has achieved a 100% accuracy. Using a simple data augmentation technique for the dataset, the classification result between the normal, interictal and ictal cases accomplished a 98.89% average overall accuracy. The evaluation of the proposed system is conducted using k-fold cross-validation to ensure its robustness.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Recording the brain electrical activities using Electroencephalogram (EEG) has become the most widely applied tool by physicians for the diagnosis of neurological disorders. In this paper, we propose an automatic epileptic seizure detection system based on raw EEG signals recordings. The proposed system uses a one-dimensional convolutional neural network (CNN) as a preprocessing front-end and a bidirectional long short-term memory (Bi-LSTM) recurrent neural network as a back-end. The system works efficiently on classifying raw EEG signals without the overhead of features extraction. Classification between normal and ictal cases has achieved a 100% accuracy. Using a simple data augmentation technique for the dataset, the classification result between the normal, interictal and ictal cases accomplished a 98.89% average overall accuracy. The evaluation of the proposed system is conducted using k-fold cross-validation to ensure its robustness.