Research on Thermal Properties of Insulator-Metal Transition at Room Temperature in Sm1-xCaxMnO3

Ruxia Chang, Desong Fan, Qiang Li
{"title":"Research on Thermal Properties of Insulator-Metal Transition at Room Temperature in Sm1-xCaxMnO3","authors":"Ruxia Chang, Desong Fan, Qiang Li","doi":"10.1115/mnhmt2019-3963","DOIUrl":null,"url":null,"abstract":"\n The high-purity electron-doped manganites Sm1-xCaxMnO3 nanopowder were prepared by the solid-state reaction method, then the bulk material were obtained through granulation, molding, calcining, grinding and polishing. SCMO nanoparticles with 200 nm were obtained by the sol-gal process. The phase and surface morphology of these materials were characterized by X-ray diffraction and Scanning electron microscope and other experiments. The variable resistivity of the bulk materials were measured by two-wire method in the temperature range of 100–420K. The thermal conductivity was measured by the Laser Flash method. The results show that different doping ratios can change the phase transition temperature of the metal-insulation state. The temperature changed from 0 to 50 °C. The TMI could be regulated to room temperature. When the temperature is high than the TMI, it performs as metal state, on the contrary, it performs as an insulating state.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-3963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The high-purity electron-doped manganites Sm1-xCaxMnO3 nanopowder were prepared by the solid-state reaction method, then the bulk material were obtained through granulation, molding, calcining, grinding and polishing. SCMO nanoparticles with 200 nm were obtained by the sol-gal process. The phase and surface morphology of these materials were characterized by X-ray diffraction and Scanning electron microscope and other experiments. The variable resistivity of the bulk materials were measured by two-wire method in the temperature range of 100–420K. The thermal conductivity was measured by the Laser Flash method. The results show that different doping ratios can change the phase transition temperature of the metal-insulation state. The temperature changed from 0 to 50 °C. The TMI could be regulated to room temperature. When the temperature is high than the TMI, it performs as metal state, on the contrary, it performs as an insulating state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sm1-xCaxMnO3绝缘子-金属室温相变热性能研究
采用固相反应法制备了高纯掺杂锰酸盐Sm1-xCaxMnO3纳米粉体,并通过造粒、成型、煅烧、研磨、抛光等工艺得到了块状材料。采用溶胶-gal法制备了粒径为200 nm的SCMO纳米颗粒。通过x射线衍射、扫描电镜等实验对材料的物相和表面形貌进行了表征。采用双线法测量了块状材料在100-420K温度范围内的变电阻率。用激光闪蒸法测定了热导率。结果表明,不同掺杂比例可以改变金属绝缘态的相变温度。温度从0℃变化到50℃。TMI可以调节到室温。当温度高于TMI时,它表现为金属态,反之则表现为绝缘态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Start-Up Performance of Pulsating Heat Pipe With Communicating Pipe at Different Inclination Angles Laser Ablation of Crystalline Material With and Without Water on Material Surface A Method for Measuring Thermal Conductivity of Low-Dimensional Materials Based on DC Heating Experiment of Enhanced Pool Boiling Heat Transfer on Coupling Effects of Nano-Structure and Synergistic Micro-Channel Experimental and Theoretical Study on the Effect of Pressure and Surface Roughness on Thermal Contact Resistance With LMA As TIM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1