Kernel Density Estimation for Optimal Detection in All-Bit-Line MLC Flash Memories

Reza A. Ashrafi, A. E. Pusane, Suayb S. Arslan
{"title":"Kernel Density Estimation for Optimal Detection in All-Bit-Line MLC Flash Memories","authors":"Reza A. Ashrafi, A. E. Pusane, Suayb S. Arslan","doi":"10.1109/SIU.2019.8806517","DOIUrl":null,"url":null,"abstract":"NAND flash memories have recently become the main component of large-scale non-volatile storage systems. Recent studies have shown that various error sources degrade the Multi-level cell (MLC) memory performance, including intercell interference, retention error, and random telegraph noise. Accurate integration of these error sources into the analytical model to optimally derive the governing probability distributions and consequently the detection thresholds to minimize error rates lie at the heart of MLC research. Utilizing static derivations will not address the detection problem, as aforementioned error sources exhibit a strong non-stationary behavior. In this paper, a novel low-complexity implementation of a non-parametric learning mechanism, kernel density estimation, shall be used to periodically estimate the underlying probability distributions and hence approximate the optimal detection performance for time-varying all-bit-line MLC flash channel.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

NAND flash memories have recently become the main component of large-scale non-volatile storage systems. Recent studies have shown that various error sources degrade the Multi-level cell (MLC) memory performance, including intercell interference, retention error, and random telegraph noise. Accurate integration of these error sources into the analytical model to optimally derive the governing probability distributions and consequently the detection thresholds to minimize error rates lie at the heart of MLC research. Utilizing static derivations will not address the detection problem, as aforementioned error sources exhibit a strong non-stationary behavior. In this paper, a novel low-complexity implementation of a non-parametric learning mechanism, kernel density estimation, shall be used to periodically estimate the underlying probability distributions and hence approximate the optimal detection performance for time-varying all-bit-line MLC flash channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全位行MLC闪存中最优检测的核密度估计
NAND闪存近年来已成为大规模非易失性存储系统的主要组成部分。最近的研究表明,各种各样的错误源会降低多级小区(MLC)的存储性能,包括小区间干扰、保持错误和随机电报噪声。将这些误差源精确地整合到分析模型中,以最佳地推导出控制概率分布,从而确定检测阈值以最小化错误率,这是MLC研究的核心。利用静态推导不能解决检测问题,因为前面提到的误差源表现出很强的非平稳行为。在本文中,一种新的低复杂度的非参数学习机制,核密度估计,将用于定期估计潜在的概率分布,从而近似时变全位线MLC闪存信道的最佳检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antenna Selection on Spatial Modulation: A Machine Learning Approach Design of Phase and Amplitude Controlled Circuits for Active Phased-Array RF Beamforming Networks Classification of Extracranial and Intracranial EEG Signals by using Finite Impulse Response Filter through Ensemble Learning Visual Place Recognition by DTW-based sequence alignment Delay Analysis for Wireless Communication Systems with Caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1