Lossless EEG Compression Algorithm Based on Semi-Supervised Learning for VLSI Implementation

Yi-Hong Chen, Yan-Ting Liu, Tsun-Kuang Chi, Chiung-An Chen, Yih-Shyh Chiou, Ting-Lan Lin, Shih-Lun Chen
{"title":"Lossless EEG Compression Algorithm Based on Semi-Supervised Learning for VLSI Implementation","authors":"Yi-Hong Chen, Yan-Ting Liu, Tsun-Kuang Chi, Chiung-An Chen, Yih-Shyh Chiou, Ting-Lan Lin, Shih-Lun Chen","doi":"10.1109/APCCAS50809.2020.9301714","DOIUrl":null,"url":null,"abstract":"In this paper, a hardware-oriented lossless EEG compression algorithm including a two-stage prediction, voting prediction and tri-entropy coding is proposed. In two stages prediction, 27 conditions and 6 functions are used to decide how to predict the current data from previous data. Then, voting prediction finds optimal function according to 27 conditions for best function to produce best Error (the difference of predicted data and current data). Moreover, a tri-entropy coding technique is developed based on normal distribution. The two-stage Huffman coding and Golomb-Rice coding was used to generate the binary code of Error value. In CHB-MIT Scalp EEG Database, the novel EEG compression algorithm achieves average compression rate to 2.37. The proposed hardware-oriented algorithm is suitable for VLSI implementation due to its low complexity.","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a hardware-oriented lossless EEG compression algorithm including a two-stage prediction, voting prediction and tri-entropy coding is proposed. In two stages prediction, 27 conditions and 6 functions are used to decide how to predict the current data from previous data. Then, voting prediction finds optimal function according to 27 conditions for best function to produce best Error (the difference of predicted data and current data). Moreover, a tri-entropy coding technique is developed based on normal distribution. The two-stage Huffman coding and Golomb-Rice coding was used to generate the binary code of Error value. In CHB-MIT Scalp EEG Database, the novel EEG compression algorithm achieves average compression rate to 2.37. The proposed hardware-oriented algorithm is suitable for VLSI implementation due to its low complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于半监督学习的脑电无损压缩算法在VLSI中的实现
提出了一种包含两阶段预测、投票预测和三熵编码的面向硬件的脑电信号无损压缩算法。在两阶段预测中,使用27个条件和6个函数来决定如何从先前的数据中预测当前的数据。然后,投票预测根据最佳函数的27个条件找到最优函数,产生最佳误差(预测数据与当前数据的差值)。在此基础上,提出了一种基于正态分布的三熵编码技术。采用两级Huffman编码和Golomb-Rice编码生成误差值的二进制码。在CHB-MIT头皮脑电图数据库中,该算法的平均压缩率达到2.37。该算法的复杂度较低,适合大规模集成电路的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"Truth from Practice, Learning beyond Teaching" Exploration in Teaching Analog Integrated Circuit 100 MHz Random Number Generator Design Using Interleaved Metastable NAND/NOR Latches* Performance Analysis of Non-Profiled Side Channel Attacks Based on Convolutional Neural Networks A Self-coupled DT MASH ΔΣ Modulator with High Tolerance to Noise Leakage An Energy-Efficient Time-Domain Binary Neural Network Accelerator with Error-Detection in 28nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1