Bingo Spatial Data Prefetcher

Mohammad Bakhshalipour, Mehran Shakerinava, P. Lotfi-Kamran, H. Sarbazi-Azad
{"title":"Bingo Spatial Data Prefetcher","authors":"Mohammad Bakhshalipour, Mehran Shakerinava, P. Lotfi-Kamran, H. Sarbazi-Azad","doi":"10.1109/HPCA.2019.00053","DOIUrl":null,"url":null,"abstract":"—Applications extensively use data objects with a regular and fixed layout, which leads to the recurrence of access patterns over memory regions. Spatial data prefetching techniques exploit this phenomenon to prefetch future memory references and hide the long latency of DRAM accesses. While state-of-the-art spatial data prefetchers are effective at reducing the number of data misses, we observe that there is still significant room for improvement. To select an access pattern for prefetching, existing spatial prefetchers associate observed access patterns to either a short event with a high probability of recurrence or a long event with a low probability of recurrence. Consequently, the prefetchers either offer low accuracy or lose significant prediction opportunities. We identify that associating the observed spatial patterns to just a single event significantly limits the effectiveness of spatial data prefetchers. In this paper, we make a case for associating the observed spatial patterns to both short and long events to achieve high accuracy while not losing prediction opportunities. We propose Bingo spatial data prefetcher in which short and long events are used to select the best access pattern for prefetching. We propose a storage-efficient design for Bingo in such a way that just one history table is needed to maintain the association between the access patterns and the long and short events. Through a detailed evaluation of a set of big-data applications, we show that Bingo improves system performance by 60% over a baseline with no data prefetcher and 11% over the best-performing prior spatial data prefetcher.","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

—Applications extensively use data objects with a regular and fixed layout, which leads to the recurrence of access patterns over memory regions. Spatial data prefetching techniques exploit this phenomenon to prefetch future memory references and hide the long latency of DRAM accesses. While state-of-the-art spatial data prefetchers are effective at reducing the number of data misses, we observe that there is still significant room for improvement. To select an access pattern for prefetching, existing spatial prefetchers associate observed access patterns to either a short event with a high probability of recurrence or a long event with a low probability of recurrence. Consequently, the prefetchers either offer low accuracy or lose significant prediction opportunities. We identify that associating the observed spatial patterns to just a single event significantly limits the effectiveness of spatial data prefetchers. In this paper, we make a case for associating the observed spatial patterns to both short and long events to achieve high accuracy while not losing prediction opportunities. We propose Bingo spatial data prefetcher in which short and long events are used to select the best access pattern for prefetching. We propose a storage-efficient design for Bingo in such a way that just one history table is needed to maintain the association between the access patterns and the long and short events. Through a detailed evaluation of a set of big-data applications, we show that Bingo improves system performance by 60% over a baseline with no data prefetcher and 11% over the best-performing prior spatial data prefetcher.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间数据预取器
-应用程序广泛使用具有规则和固定布局的数据对象,这导致在内存区域上重复访问模式。空间数据预取技术利用这种现象来预取未来的内存引用,并隐藏DRAM访问的长延迟。虽然最先进的空间数据预取器在减少数据丢失数量方面是有效的,但我们观察到仍有很大的改进空间。为了选择用于预取的访问模式,现有的空间预取器将观察到的访问模式与高复发概率的短事件或低复发概率的长事件关联起来。因此,预取器要么提供低精度,要么失去重要的预测机会。我们发现,将观察到的空间模式与单个事件相关联,会极大地限制空间数据预取器的有效性。在本文中,我们提出了将观测到的空间模式与短事件和长事件相关联的案例,以达到高精度,同时不会失去预测机会。我们提出了Bingo空间数据预取器,其中使用短事件和长事件来选择最佳的访问模式进行预取。我们为Bingo提出了一种存储效率高的设计,这样只需要一个历史表来维护访问模式与长事件和短事件之间的关联。通过对一组大数据应用程序的详细评估,我们表明Bingo比没有数据预取器的基线提高了60%的系统性能,比先前性能最好的空间数据预取器提高了11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1