Automated Indoor Drone Flight with Collision Prevention

Jay Mark S. Lagmay, Lionel Jed C. Leyba, Alessandro T. Santiago, Lea B. Tumabotabo, Wilbert Jethro R. Limjoco, N. Tiglao
{"title":"Automated Indoor Drone Flight with Collision Prevention","authors":"Jay Mark S. Lagmay, Lionel Jed C. Leyba, Alessandro T. Santiago, Lea B. Tumabotabo, Wilbert Jethro R. Limjoco, N. Tiglao","doi":"10.1109/TENCON.2018.8650371","DOIUrl":null,"url":null,"abstract":"This paper details a system that provides positioning, obstacle detection and avoidance, pathfinding, and energy monitoring suitable for indoor operation designed for the Crazyflie 2.0 drone. The positioning subsystem was achieved by a hybrid of Received Signal Strength Indicators and Dead Reckoning. Obstacle detection and avoidance used an IR sensor to detect objects in the drone’s path, allowing the drone to look for alternate paths. Pathfinding used a modified Node Array A* algorithm implemented in a 3D model of the testing area within the Unity engine. Finally, energy monitoring used the drone’s built-in Python library to log voltage values and were sent to the Unity system, which reroutes the drone upon detecting a low battery voltage. The system was able to provide a basic autonomous navigation system that prioritizes safety of the drone and its flying environment.","PeriodicalId":132900,"journal":{"name":"TENCON 2018 - 2018 IEEE Region 10 Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2018 - 2018 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2018.8650371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper details a system that provides positioning, obstacle detection and avoidance, pathfinding, and energy monitoring suitable for indoor operation designed for the Crazyflie 2.0 drone. The positioning subsystem was achieved by a hybrid of Received Signal Strength Indicators and Dead Reckoning. Obstacle detection and avoidance used an IR sensor to detect objects in the drone’s path, allowing the drone to look for alternate paths. Pathfinding used a modified Node Array A* algorithm implemented in a 3D model of the testing area within the Unity engine. Finally, energy monitoring used the drone’s built-in Python library to log voltage values and were sent to the Unity system, which reroutes the drone upon detecting a low battery voltage. The system was able to provide a basic autonomous navigation system that prioritizes safety of the drone and its flying environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动室内无人机飞行与碰撞预防
本文详细介绍了为crazyfly 2.0无人机设计的适合室内操作的定位、障碍物检测与避障、寻径和能量监测系统。定位子系统采用接收信号强度指示器和航位推算相结合的方法实现。障碍物检测和避免使用红外传感器来检测无人机路径上的物体,使无人机能够寻找替代路径。寻路使用了在Unity引擎中测试区域的3D模型中执行的改进的Node Array a *算法。最后,能量监测使用无人机的内置Python库来记录电压值,并被发送到Unity系统,该系统在检测到低电池电压时重新路由无人机。该系统能够提供一个基本的自主导航系统,优先考虑无人机及其飞行环境的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency Profile Improvement of a Microgrid through Aggregated Demand Response A Study on Coarse Stage Bit Allocation to Improve Power Efficiency of a 10-bit Coarse-Fine SAR ADC Implemented in 65nm CMOS Process for Environmental Sensing Applications Analysis on the Limitation of Number of Channels in WDM System Based on Photonic Microring Resonator BMK Stick: IMU-Based Motion Recognition Air Mouse and Five-Multikey Keyboard Demand Response for Enhancing Survivability of Microgrids During Islanded Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1