{"title":"Nonlinear Consensus-Based Synchronizing Tracking Control of Networked DC Motors","authors":"H. Güzey, A. Dumlu","doi":"10.1109/CEIT.2018.8751823","DOIUrl":null,"url":null,"abstract":"In this study, consensus-based synchronizing control for DC motors is presented. Nonlinear sliding mode based dynamical control of DC motors is extended for a group of networked DC motors and a novel consensus control is developed to make the motors reach the same state (position or speed). One of the motors in the network is assigned as the group leader. The leader is controlled through sliding mode controller to track a given desired trajectory. While the rest of the motors in the network are controlled through the novel synchronizing controller developed in this work. As long as the communication network is connected, it is shown that the motors eventually track the desired trajectory given to the leader without having any knowledge of the desired trajectory. Experimental results are provided at the end of the paper to verify our proposed theoretical claims.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, consensus-based synchronizing control for DC motors is presented. Nonlinear sliding mode based dynamical control of DC motors is extended for a group of networked DC motors and a novel consensus control is developed to make the motors reach the same state (position or speed). One of the motors in the network is assigned as the group leader. The leader is controlled through sliding mode controller to track a given desired trajectory. While the rest of the motors in the network are controlled through the novel synchronizing controller developed in this work. As long as the communication network is connected, it is shown that the motors eventually track the desired trajectory given to the leader without having any knowledge of the desired trajectory. Experimental results are provided at the end of the paper to verify our proposed theoretical claims.