Estimating skeleton-based gait abnormality index by sparse deep auto-encoder

Trong-Nguyen Nguyen, H. Huynh, J. Meunier
{"title":"Estimating skeleton-based gait abnormality index by sparse deep auto-encoder","authors":"Trong-Nguyen Nguyen, H. Huynh, J. Meunier","doi":"10.1109/CCE.2018.8465714","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach estimating a gait abnormality index based on skeletal information provided by a depth camera. Differently from related works where the extraction of hand-crafted features is required to describe gait characteristics, our method automatically performs that stage with the support of a deep auto-encoder. In order to get visually interpretable features, we embedded a constraint of sparsity into the model. Similarly to most gait-related studies, the temporal factor is also considered as a post-processing in our system. This method provided promising results when experimenting on a dataset containing nearly one hundred thousand skeleton samples.","PeriodicalId":118716,"journal":{"name":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2018.8465714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes an approach estimating a gait abnormality index based on skeletal information provided by a depth camera. Differently from related works where the extraction of hand-crafted features is required to describe gait characteristics, our method automatically performs that stage with the support of a deep auto-encoder. In order to get visually interpretable features, we embedded a constraint of sparsity into the model. Similarly to most gait-related studies, the temporal factor is also considered as a post-processing in our system. This method provided promising results when experimenting on a dataset containing nearly one hundred thousand skeleton samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏深度自编码器估计基于骨骼的步态异常指数
提出了一种基于深度相机提供的骨骼信息估计步态异常指数的方法。与需要手工提取特征来描述步态特征的相关工作不同,我们的方法在深度自编码器的支持下自动执行该阶段。为了获得视觉上可解释的特征,我们在模型中嵌入了稀疏性约束。与大多数步态相关的研究类似,在我们的系统中,时间因素也被认为是一种后处理。在包含近10万个骨骼样本的数据集上进行实验时,该方法提供了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Optimal Input and Capacity of Non-Coherent Correlated MISO Channels under Per-Antenna Power Constraints Multi-Objective Optimal Resource Allocation Using Particle Swarm Optimization in Cognitive Radio Benchmarking the ONOS Controller with OFCProbe On Selecting the Appropriate Scale in Image Selective Smoothing by Nonlinear Diffusion Multibeam Transmitarrays for 5G Antenna Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1