Multi-Objective Optimal Resource Allocation Using Particle Swarm Optimization in Cognitive Radio

Hamza Khan, S. Yoo
{"title":"Multi-Objective Optimal Resource Allocation Using Particle Swarm Optimization in Cognitive Radio","authors":"Hamza Khan, S. Yoo","doi":"10.1109/CCE.2018.8465749","DOIUrl":null,"url":null,"abstract":"In multi-channel ad-hoc cognitive radio networks, each channel has different wireless channel gain and primary activity so that achievable data rate to secondary users (SUs) and required sensing parameter value are channel dependent. SUs also have different energy saving requirements and data traffic demands. In this paper, a dynamic MAC frame configuration and optimal resource allocation scheme for multi-channel ad-hoc cognitive radio network is proposed. We formulate our dynamic resource allocation model as a constrained optimization problem with multi-objective functions using particle swarm optimization (PSO) algorithm. The proposed PSO scheme guarantees that the allocation captures the individual traffic and energy saving demands and maximizes the objectives functions simultaneously.","PeriodicalId":118716,"journal":{"name":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","volume":"1778 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2018.8465749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In multi-channel ad-hoc cognitive radio networks, each channel has different wireless channel gain and primary activity so that achievable data rate to secondary users (SUs) and required sensing parameter value are channel dependent. SUs also have different energy saving requirements and data traffic demands. In this paper, a dynamic MAC frame configuration and optimal resource allocation scheme for multi-channel ad-hoc cognitive radio network is proposed. We formulate our dynamic resource allocation model as a constrained optimization problem with multi-objective functions using particle swarm optimization (PSO) algorithm. The proposed PSO scheme guarantees that the allocation captures the individual traffic and energy saving demands and maximizes the objectives functions simultaneously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法的认知无线电多目标资源优化分配
在多信道自组织认知无线网络中,每个信道具有不同的无线信道增益和主要活动,因此可实现的辅助用户数据速率和所需的感知参数值与信道有关。不同的业务单元也有不同的节能需求和数据流量需求。提出了一种多信道自组织认知无线网络的动态MAC帧配置和最优资源分配方案。利用粒子群优化算法将动态资源分配模型描述为一个多目标函数约束优化问题。所提出的粒子群优化方案能够同时捕捉到个体交通和节能需求,并使目标函数最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Optimal Input and Capacity of Non-Coherent Correlated MISO Channels under Per-Antenna Power Constraints Multi-Objective Optimal Resource Allocation Using Particle Swarm Optimization in Cognitive Radio Benchmarking the ONOS Controller with OFCProbe On Selecting the Appropriate Scale in Image Selective Smoothing by Nonlinear Diffusion Multibeam Transmitarrays for 5G Antenna Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1