Error Study of EIT Inverse Problem Solution Using Neural Networks

M. Ghasemazar, B. Vahdat
{"title":"Error Study of EIT Inverse Problem Solution Using Neural Networks","authors":"M. Ghasemazar, B. Vahdat","doi":"10.1109/ISSPIT.2007.4458154","DOIUrl":null,"url":null,"abstract":"Electrical Impedance Tomography (EIT) is a visualization of the internal electric conductivity of an object using measurements performed on its surfaces. As an Inverse problem, the solution can be approximated by means of Artificial Neural Networks. In this paper, an Artificial Neural Network solution to this Inverse Problem is presented. Based on the electrical voltage and current measurements on the boundary of the object, the conductivity distribution has been found and the resulting error is calculated. The error is compared for different Neural Network architectures to detect and minimize the errors caused by the solution method. Also, different Neural Networks were tested in the noisy and noiseless conditions to reach the suitable architecture for each case and investigate the measurement error and noise effects. Other than overall error of the whole circuit, distribution of error in different areas of the object is analyzed.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Electrical Impedance Tomography (EIT) is a visualization of the internal electric conductivity of an object using measurements performed on its surfaces. As an Inverse problem, the solution can be approximated by means of Artificial Neural Networks. In this paper, an Artificial Neural Network solution to this Inverse Problem is presented. Based on the electrical voltage and current measurements on the boundary of the object, the conductivity distribution has been found and the resulting error is calculated. The error is compared for different Neural Network architectures to detect and minimize the errors caused by the solution method. Also, different Neural Networks were tested in the noisy and noiseless conditions to reach the suitable architecture for each case and investigate the measurement error and noise effects. Other than overall error of the whole circuit, distribution of error in different areas of the object is analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络求解EIT逆问题的误差研究
电阻抗断层扫描(EIT)是一种可视化的内部电导率的物体表面进行测量。作为一个逆问题,解可以用人工神经网络来逼近。本文提出了一种人工神经网络求解该反问题的方法。通过测量物体边界上的电压和电流,得到了其电导率分布,并计算了误差。比较了不同神经网络结构的误差,以检测和最小化求解方法引起的误差。并在有噪声和无噪声条件下对不同的神经网络进行了测试,得出了适合每种情况的结构,并研究了测量误差和噪声影响。除了分析整个电路的总体误差外,还分析了误差在目标不同区域的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distribution of a Stochastic Control Algorithm Applied to Gas Storage Valuation Efficient Synthesis of Arbitrary Viewpoint Images Using 3-D Geometric Model and Mesh-Based Specular Reflection Tracing Relative Iris Codes Towards Evaluation of Phonics Method for Teaching of Reading Using Artificial Neural Networks (A Cognitive Modeling Approach) A concept of mathematical methods for the optimization of the post-processing of nuclear resonance spectra of the human skeletal musculature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1