Adaptive SIFT Matching Using Cascading Vocabulary Tree

Fang Zhiqiang, Shen Xukun
{"title":"Adaptive SIFT Matching Using Cascading Vocabulary Tree","authors":"Fang Zhiqiang, Shen Xukun","doi":"10.1109/ICVRV.2011.35","DOIUrl":null,"url":null,"abstract":"We present a novel vocabulary tree data structure for adaptive SIFT matching. Our matching process contains an offline module to cluster features from a group of reference images and an online module to match them to the live images in order to enhance matching robustness. The main contribution lies in constructing two different vocabulary structures cascaded in one tree, which we have called cascading vocabulary tree that can be used to not only cluster features but also implement exact feature matching as k-d tree does. Cascading key frame selection using our vocabulary structure can be put the matching process forward, which gives us a way to employ a cascading feature matching strategy to combine matching results of cascading vocabulary tree and key frame. Experimental results show that our method not only dramatically enhances matching robustness but also has enough flexibility to adaptively adjust itself to meet diverse requirements of domain applications for efficiency and robustness of SIFT matching.","PeriodicalId":239933,"journal":{"name":"2011 International Conference on Virtual Reality and Visualization","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Virtual Reality and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2011.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel vocabulary tree data structure for adaptive SIFT matching. Our matching process contains an offline module to cluster features from a group of reference images and an online module to match them to the live images in order to enhance matching robustness. The main contribution lies in constructing two different vocabulary structures cascaded in one tree, which we have called cascading vocabulary tree that can be used to not only cluster features but also implement exact feature matching as k-d tree does. Cascading key frame selection using our vocabulary structure can be put the matching process forward, which gives us a way to employ a cascading feature matching strategy to combine matching results of cascading vocabulary tree and key frame. Experimental results show that our method not only dramatically enhances matching robustness but also has enough flexibility to adaptively adjust itself to meet diverse requirements of domain applications for efficiency and robustness of SIFT matching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用级联词汇树的自适应SIFT匹配
提出了一种新的自适应SIFT匹配的词汇树数据结构。我们的匹配过程包含一个离线模块,用于从一组参考图像中聚类特征,一个在线模块用于将它们与实时图像进行匹配,以增强匹配的鲁棒性。其主要贡献在于构建了级联在一棵树上的两个不同的词汇结构,我们称之为级联词汇树,它不仅可以用于聚类特征,还可以像k-d树那样实现精确的特征匹配。利用我们的词汇结构进行级联关键帧选择,可以将匹配过程向前推进,这为我们提供了一种采用级联特征匹配策略将级联词汇树和关键帧的匹配结果结合起来的方法。实验结果表明,该方法不仅显著提高了SIFT匹配的鲁棒性,而且具有足够的灵活性,能够自适应适应不同领域应用对SIFT匹配效率和鲁棒性的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Adaptive Method for Shader Simplification Multi-view Stereo Reconstruction for Internet Photos Using AR Technology for Automotive Visibility and Accessibility Assessment Building Virtual Entertainment Environment with Tiled Display Wall and Motion Tracking An Adaptive Sampling Based Parallel Volume Rendering Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1