Malicious traffic analysis using Markov chain

Ryandy Djap, Charles Lim, Kalpin Erlangga Silaen
{"title":"Malicious traffic analysis using Markov chain","authors":"Ryandy Djap, Charles Lim, Kalpin Erlangga Silaen","doi":"10.1145/3557738.3557849","DOIUrl":null,"url":null,"abstract":"A massive increase in cyber attacks during pandemics has made enterprise organizations around the world strive to find new ways to comprehend and detect unknown threats. A firewall has been devised specifically for these tasks, warding off external attacks on the enterprise perimeter network. Our research aims to identify these possible intrusions through firewall traffic analysis based on the Markov chain state transition graph. The research results show that our methods can clearly distinguish malicious traffic from anomaly traffic.","PeriodicalId":178760,"journal":{"name":"Proceedings of the 2022 International Conference on Engineering and Information Technology for Sustainable Industry","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Engineering and Information Technology for Sustainable Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3557738.3557849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A massive increase in cyber attacks during pandemics has made enterprise organizations around the world strive to find new ways to comprehend and detect unknown threats. A firewall has been devised specifically for these tasks, warding off external attacks on the enterprise perimeter network. Our research aims to identify these possible intrusions through firewall traffic analysis based on the Markov chain state transition graph. The research results show that our methods can clearly distinguish malicious traffic from anomaly traffic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于马尔可夫链的恶意流量分析
大流行期间网络攻击的大量增加,促使世界各地的企业组织努力寻找新的方法来理解和检测未知威胁。专门为这些任务设计了防火墙,防止对企业外围网络的外部攻击。我们的研究旨在通过基于马尔可夫链状态转移图的防火墙流量分析来识别这些可能的入侵。研究结果表明,该方法可以很好地区分恶意流量和异常流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Color Palettes Overview After Thresholding Process with Default Methods of ImageJ or FIJI∗ Application of Six Sigma in Quality Improvement of Deodorant Products at PT Cedefindo Controlling The Performance of Anti-lock Braking System at Various Tracks and Vehicle Conditions Assessment Risk Ergonomic in Painting Industry using Ergo-FMEA: Assessment Risk Ergonomic in Painting Industry using Ergo-FMEA A Combined Application of SERVQUAL and fuzzy DEMATEL to Evaluate a University's Service Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1