{"title":"Self-Chord: A Bio-inspired Algorithm for Structured P2P Systems","authors":"Agostino Forestiero, C. Mastroianni, M. Meo","doi":"10.1109/CCGRID.2009.39","DOIUrl":null,"url":null,"abstract":"This paper presents “Self-Chord”, a bio-inspired P2P algorithm that can be profitably adopted to build the information service of distributed systems, in particular Computational Grids and Clouds. Self-Chord inherits the ability of Chord-like structured systems for the construction and maintenance of an overlay of peers, but features enhanced functionalities deriving from the activity of ant-inspired mobile agents, such as autonomy behavior, self-organization and capacity to adapt to a changing environment. Self-Chord features three main benefits with respect to classical P2P structured systems: (i) it is possible to give a semantic meaning to keys, which enables the execution of \"class\" queries, often issued in Grids and Clouds; (ii) the keys are fairly distributed over the peers, thus improving the balancing of storage responsibilities; (iii) maintenance load is reduced because, as new peers join the ring, the mobile agents will spontaneously reorganize the keys in logarithmic time.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This paper presents “Self-Chord”, a bio-inspired P2P algorithm that can be profitably adopted to build the information service of distributed systems, in particular Computational Grids and Clouds. Self-Chord inherits the ability of Chord-like structured systems for the construction and maintenance of an overlay of peers, but features enhanced functionalities deriving from the activity of ant-inspired mobile agents, such as autonomy behavior, self-organization and capacity to adapt to a changing environment. Self-Chord features three main benefits with respect to classical P2P structured systems: (i) it is possible to give a semantic meaning to keys, which enables the execution of "class" queries, often issued in Grids and Clouds; (ii) the keys are fairly distributed over the peers, thus improving the balancing of storage responsibilities; (iii) maintenance load is reduced because, as new peers join the ring, the mobile agents will spontaneously reorganize the keys in logarithmic time.