Interpretable Click-Through Rate Prediction through Hierarchical Attention

Zeyu Li, Wei Cheng, Yang Chen, Haifeng Chen, Wei Wang
{"title":"Interpretable Click-Through Rate Prediction through Hierarchical Attention","authors":"Zeyu Li, Wei Cheng, Yang Chen, Haifeng Chen, Wei Wang","doi":"10.1145/3336191.3371785","DOIUrl":null,"url":null,"abstract":"Click-through rate (CTR) prediction is a critical task in online advertising and marketing. For this problem, existing approaches, with shallow or deep architectures, have three major drawbacks. First, they typically lack persuasive rationales to explain the outcomes of the models. Unexplainable predictions and recommendations may be difficult to validate and thus unreliable and untrustworthy. In many applications, inappropriate suggestions may even bring severe consequences. Second, existing approaches have poor efficiency in analyzing high-order feature interactions. Third, the polysemy of feature interactions in different semantic subspaces is largely ignored. In this paper, we propose InterHAt that employs a Transformer with multi-head self-attention for feature learning. On top of that, hierarchical attention layers are utilized for predicting CTR while simultaneously providing interpretable insights of the prediction results. InterHAt captures high-order feature interactions by an efficient attentional aggregation strategy with low computational complexity. Extensive experiments on four public real datasets and one synthetic dataset demonstrate the effectiveness and efficiency of InterHAt.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

Click-through rate (CTR) prediction is a critical task in online advertising and marketing. For this problem, existing approaches, with shallow or deep architectures, have three major drawbacks. First, they typically lack persuasive rationales to explain the outcomes of the models. Unexplainable predictions and recommendations may be difficult to validate and thus unreliable and untrustworthy. In many applications, inappropriate suggestions may even bring severe consequences. Second, existing approaches have poor efficiency in analyzing high-order feature interactions. Third, the polysemy of feature interactions in different semantic subspaces is largely ignored. In this paper, we propose InterHAt that employs a Transformer with multi-head self-attention for feature learning. On top of that, hierarchical attention layers are utilized for predicting CTR while simultaneously providing interpretable insights of the prediction results. InterHAt captures high-order feature interactions by an efficient attentional aggregation strategy with low computational complexity. Extensive experiments on four public real datasets and one synthetic dataset demonstrate the effectiveness and efficiency of InterHAt.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可解释的点击率预测通过层次注意
点击率(CTR)预测是网络广告和营销中的一项关键任务。对于这个问题,现有的方法,无论是浅架构还是深架构,都有三个主要的缺点。首先,他们通常缺乏有说服力的理由来解释模型的结果。无法解释的预测和建议可能难以验证,因此不可靠和不值得信任。在许多应用中,不恰当的建议甚至可能带来严重的后果。其次,现有方法在分析高阶特征交互时效率较低。第三,不同语义子空间中特征交互的多义性在很大程度上被忽略。在本文中,我们提出了使用具有多头自关注的Transformer进行特征学习的InterHAt。最重要的是,分层注意层用于预测点击率,同时提供预测结果的可解释见解。InterHAt通过低计算复杂度的高效注意力聚合策略捕获高阶特征交互。在4个公开真实数据集和1个合成数据集上的大量实验证明了InterHAt的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1