Najla D. Al Futaisi, Alejandrina Cristia, B. Schuller
{"title":"Hearttoheart: The Arts of Infant Versus Adult-Directed Speech Classification","authors":"Najla D. Al Futaisi, Alejandrina Cristia, B. Schuller","doi":"10.1109/ICASSP49357.2023.10096728","DOIUrl":null,"url":null,"abstract":"Psycholinguistics researchers investigate child language exposure by studying children’s language environment. A main factor is whether, in humanistic heart-to-heart dialogue, the speech is directed to the infant (infant-directed speech) versus to another adult (adult-directed speech). The former has been found to better predict children’s lexicon, and therefore constitutes a more relevant part of children’s language environment. Listening to, segmenting and annotating naturalistic long-form recordings collected through infant-worn devices is highly costly and time-consuming, and could be prone to errors in misclassification. We aim to overcome these challenges by automatically classifying speech as infant-directed versus adult-directed. In this research, we exploit multiple datasets, combined to form a larger corpus for training. In addition, we employ four different methods: Multi-task learning, adversarial training, autoencoder multi-task learning and adversarial multi-task learning, the last of which yielded the best results on all datasets.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"26 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Psycholinguistics researchers investigate child language exposure by studying children’s language environment. A main factor is whether, in humanistic heart-to-heart dialogue, the speech is directed to the infant (infant-directed speech) versus to another adult (adult-directed speech). The former has been found to better predict children’s lexicon, and therefore constitutes a more relevant part of children’s language environment. Listening to, segmenting and annotating naturalistic long-form recordings collected through infant-worn devices is highly costly and time-consuming, and could be prone to errors in misclassification. We aim to overcome these challenges by automatically classifying speech as infant-directed versus adult-directed. In this research, we exploit multiple datasets, combined to form a larger corpus for training. In addition, we employ four different methods: Multi-task learning, adversarial training, autoencoder multi-task learning and adversarial multi-task learning, the last of which yielded the best results on all datasets.