Degradation enhancement for the captured document image using retinex theory

M. Wagdy, I. Faye, D. Rohaya
{"title":"Degradation enhancement for the captured document image using retinex theory","authors":"M. Wagdy, I. Faye, D. Rohaya","doi":"10.1109/ICIMU.2014.7066660","DOIUrl":null,"url":null,"abstract":"The state-of-arts global thresholding techniques are fast and efficient to convert the gray scale document image into a binary image. However, they are unsuitable for complex and degraded documents. Moreover, global thresholding techniques produce border noise when the illumination of the document is not uniform. Other methods that depend on local thresholding techniques are efficient in the case of degraded document images, but have common disadvantages include the dependence on the region size and the image characteristics, and the computational time. In this paper we propose a method to overcome the limitations of the related global and local threshold techniques by using the concept of Retinex theory based on Median filter which can effectively enhance the degraded and poor quality document image. High quality results in terms of visual criteria and OCR performance is produced compared to the previous works.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The state-of-arts global thresholding techniques are fast and efficient to convert the gray scale document image into a binary image. However, they are unsuitable for complex and degraded documents. Moreover, global thresholding techniques produce border noise when the illumination of the document is not uniform. Other methods that depend on local thresholding techniques are efficient in the case of degraded document images, but have common disadvantages include the dependence on the region size and the image characteristics, and the computational time. In this paper we propose a method to overcome the limitations of the related global and local threshold techniques by using the concept of Retinex theory based on Median filter which can effectively enhance the degraded and poor quality document image. High quality results in terms of visual criteria and OCR performance is produced compared to the previous works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用视网膜理论对捕获的文档图像进行退化增强
采用当前最先进的全局阈值分割技术,可以快速有效地将灰度文档图像转换为二值图像。然而,它们不适用于复杂和退化的文件。此外,当文档的光照不均匀时,全局阈值分割技术会产生边界噪声。其他依赖于局部阈值技术的方法在文档图像退化的情况下是有效的,但有共同的缺点,包括对区域大小和图像特征的依赖,以及计算时间。本文提出了一种基于中值滤波的Retinex理论的方法,克服了相关的全局和局部阈值技术的局限性,可以有效地增强退化的、质量较差的文档图像。与以前的作品相比,在视觉标准和OCR性能方面产生了高质量的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Table of content (TOC) A data mining approach to analysing airborne wood particulate concentration and atmospheric data Mobile platform for exploring the potential of volunteered geographic information for asset register Web-based learning tool for primary school student with dyscalculia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1