Performance analysis of various deep learning techniques for brain tumor classification

Preeti Jaidka, Sachin Jain
{"title":"Performance analysis of various deep learning techniques for brain tumor classification","authors":"Preeti Jaidka, Sachin Jain","doi":"10.1109/PIECON56912.2023.10085796","DOIUrl":null,"url":null,"abstract":"Brain MRI image tumors are classified using machine learning techniques in which features are extracted and given to the classifier for the classification task. The manual extraction of elements is time-consuming and leads to poor performance due to a poor selection of features. This paper describes the performance analysis of various deep-learning techniques for brain tumor classification. These methods were assessed using three different categorization performance indices. The logistic regression and hybrid approach discovered a maximum classification accuracy of 89% for small and 87% for large datasets.","PeriodicalId":182428,"journal":{"name":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIECON56912.2023.10085796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain MRI image tumors are classified using machine learning techniques in which features are extracted and given to the classifier for the classification task. The manual extraction of elements is time-consuming and leads to poor performance due to a poor selection of features. This paper describes the performance analysis of various deep-learning techniques for brain tumor classification. These methods were assessed using three different categorization performance indices. The logistic regression and hybrid approach discovered a maximum classification accuracy of 89% for small and 87% for large datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各种深度学习技术在脑肿瘤分类中的性能分析
脑MRI图像肿瘤使用机器学习技术进行分类,其中提取特征并给予分类器进行分类任务。手工提取元素非常耗时,并且由于特征选择不佳而导致性能不佳。本文介绍了各种深度学习技术在脑肿瘤分类中的性能分析。使用三种不同的分类性能指标对这些方法进行了评估。逻辑回归和混合方法发现,小数据集的最大分类准确率为89%,大数据集的最大分类准确率为87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A review of Market Based Economic Dispatch in India for uniform electricity pricing Active Disturbance Rejection Control for Time Varying Disturbances: Comparative Study on a DC-DC Boost Converter Design of Missile Roll Autopilot based on Quantitative Feedback Theory Autonomous Underwater Vehicles’ Control System Design Implementation Three-Phase Dynamic AC Braking of Induction Motors by Discontinuous Phase-Controlled Switching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1