Fault diagnosis with feature representation based on stacked sparse auto encoder

Zheng Zhang, X. Ren, Hengxing Lv
{"title":"Fault diagnosis with feature representation based on stacked sparse auto encoder","authors":"Zheng Zhang, X. Ren, Hengxing Lv","doi":"10.1109/YAC.2018.8406476","DOIUrl":null,"url":null,"abstract":"A deep learning method for fault diagnosis is proposed in this paper. The stacked sparse auto encoder(SSAE) model with the theory of deep learning extracts deep feature representation from original fault data. Compared with traditional methods, SSAE is more efficient because of its deep architecture. The feature representation is used by a softmax classifier for fault detection and classification. The proposed method is experimented on Tennessee Eastman Process(TEP), a chemical industrial process benchmark, to demonstrate its practicality and effectiveness.","PeriodicalId":226586,"journal":{"name":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2018.8406476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A deep learning method for fault diagnosis is proposed in this paper. The stacked sparse auto encoder(SSAE) model with the theory of deep learning extracts deep feature representation from original fault data. Compared with traditional methods, SSAE is more efficient because of its deep architecture. The feature representation is used by a softmax classifier for fault detection and classification. The proposed method is experimented on Tennessee Eastman Process(TEP), a chemical industrial process benchmark, to demonstrate its practicality and effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于堆叠稀疏自编码器的特征表示故障诊断
提出了一种用于故障诊断的深度学习方法。基于深度学习理论的堆叠稀疏自编码器(SSAE)模型从原始故障数据中提取深度特征表示。与传统方法相比,SSAE因其深层结构而具有更高的效率。特征表示被softmax分类器用于故障检测和分类。以田纳西伊士曼工艺(Tennessee Eastman Process, TEP)为实验对象,验证了该方法的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A local multi-robot cooperative formation control Data-driven policy learning strategy for nonlinear robust control with unknown perturbation Inverse kinematics of 7-DOF redundant manipulators with arbitrary offsets based on augmented Jacobian On supply demand coordination in vehicle-to-grid — A brief literature review Trajectory tracking control for mobile robots based on second order fast terminal sliding mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1