Data-driven policy learning strategy for nonlinear robust control with unknown perturbation

Sai Fang, Ding Wang, Derong Liu, Mingming Ha
{"title":"Data-driven policy learning strategy for nonlinear robust control with unknown perturbation","authors":"Sai Fang, Ding Wang, Derong Liu, Mingming Ha","doi":"10.1109/YAC.2018.8406359","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust optimal control policy for nonlinear systems with bounded unknown perturbation by using data-driven policy learning strategy. The robust control problem is transformed into a corresponding optimal control design with specific cost function. Neural-network-based data-driven policy learning strategy is presented to solve the problem without system dynamics. The solution of the optimal control problem can asymptotically stabilize the unknown system. An example is given to illustrate the established method.","PeriodicalId":226586,"journal":{"name":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2018.8406359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a robust optimal control policy for nonlinear systems with bounded unknown perturbation by using data-driven policy learning strategy. The robust control problem is transformed into a corresponding optimal control design with specific cost function. Neural-network-based data-driven policy learning strategy is presented to solve the problem without system dynamics. The solution of the optimal control problem can asymptotically stabilize the unknown system. An example is given to illustrate the established method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未知扰动非线性鲁棒控制的数据驱动策略学习策略
本文利用数据驱动的策略学习策略,提出了具有有界未知扰动的非线性系统的鲁棒最优控制策略。将鲁棒控制问题转化为具有特定代价函数的相应最优控制设计。针对该问题,提出了基于神经网络的数据驱动策略学习策略。最优控制问题的解可以使未知系统渐近稳定。最后给出了一个算例来说明所建立的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A local multi-robot cooperative formation control Data-driven policy learning strategy for nonlinear robust control with unknown perturbation Inverse kinematics of 7-DOF redundant manipulators with arbitrary offsets based on augmented Jacobian On supply demand coordination in vehicle-to-grid — A brief literature review Trajectory tracking control for mobile robots based on second order fast terminal sliding mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1