Nasrin Afsarimanesh, M. Alahi, S. Mukhopadhyay, M. Kruger, P. Yu
{"title":"Development of molecular imprinted polymer interdigital sensor for C-terminal telopeptide of type I collagen","authors":"Nasrin Afsarimanesh, M. Alahi, S. Mukhopadhyay, M. Kruger, P. Yu","doi":"10.1109/ICSENST.2016.7796240","DOIUrl":null,"url":null,"abstract":"This paper presents a label-free and non-invasive technique for selective detection of C-terminal telopeptide type I collagen (CTx-I) by employing Electrochemical Impedance Spectroscopy to measure sample impedance. Molecular imprinted polymer, containing artificial recognition sites for CTx-was prepared by precipitation polymerization using CTx-I peptide as a template, methacrylic acid as a functional monomer and ethylene glycol methacrylate as the cross-linker. A high penetration depth planar interdigital sensor was functionalized by a self-assembled monolayer along with the synthesized MIP. Different concentrations of CTx-I sample solutions were tested using the proposed sensing system. High-Performance Liquid chromatography diode array system was used to validate the results.","PeriodicalId":297617,"journal":{"name":"2016 10th International Conference on Sensing Technology (ICST)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2016.7796240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a label-free and non-invasive technique for selective detection of C-terminal telopeptide type I collagen (CTx-I) by employing Electrochemical Impedance Spectroscopy to measure sample impedance. Molecular imprinted polymer, containing artificial recognition sites for CTx-was prepared by precipitation polymerization using CTx-I peptide as a template, methacrylic acid as a functional monomer and ethylene glycol methacrylate as the cross-linker. A high penetration depth planar interdigital sensor was functionalized by a self-assembled monolayer along with the synthesized MIP. Different concentrations of CTx-I sample solutions were tested using the proposed sensing system. High-Performance Liquid chromatography diode array system was used to validate the results.