LSTM Based Prediction of Total Dissolved Solids in Hydroponic System

R. Puriyanto, Supriyanto, A. Yudhana
{"title":"LSTM Based Prediction of Total Dissolved Solids in Hydroponic System","authors":"R. Puriyanto, Supriyanto, A. Yudhana","doi":"10.2991/adics-es-19.2019.13","DOIUrl":null,"url":null,"abstract":"This paper discusses the implementation of long short term memory (LSTM) for forecasting the value of total dissolved solids (TDS). The TDS value in a hydroponic system represents the number of nutrients contained in water. The amount of water in the hydroponic system is important to note because optimal plant growth depends on the number of nutrients obtained by the plant. TDS data is sequential data, and one way to do forecasting is to use LSTM. This study uses a combination of epoch values of 100, 200, 300, 400 and 500. The RMSE values of on any combinations 57.41, 50.90, 57.81, 67.60 and 26.62. In general, the smallest RMSE value of each combination produces a graph that is close to except for a 70%: 30% combination. The greater use of training data compared to test data (90%: 10%) results in the smallest average RMSE value of 35.48. Keywords—LSTM, forecasting, hydroponic, total dissolved solids","PeriodicalId":163074,"journal":{"name":"Proceedings of the 2019 Ahmad Dahlan International Conference Series on Engineering and Science (ADICS-ES 2019)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Ahmad Dahlan International Conference Series on Engineering and Science (ADICS-ES 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/adics-es-19.2019.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses the implementation of long short term memory (LSTM) for forecasting the value of total dissolved solids (TDS). The TDS value in a hydroponic system represents the number of nutrients contained in water. The amount of water in the hydroponic system is important to note because optimal plant growth depends on the number of nutrients obtained by the plant. TDS data is sequential data, and one way to do forecasting is to use LSTM. This study uses a combination of epoch values of 100, 200, 300, 400 and 500. The RMSE values of on any combinations 57.41, 50.90, 57.81, 67.60 and 26.62. In general, the smallest RMSE value of each combination produces a graph that is close to except for a 70%: 30% combination. The greater use of training data compared to test data (90%: 10%) results in the smallest average RMSE value of 35.48. Keywords—LSTM, forecasting, hydroponic, total dissolved solids
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM的水培体系总溶解固形物预测
本文讨论了长短期记忆(LSTM)在预测总溶解固形物(TDS)值中的应用。水培系统的TDS值代表了水中所含营养物质的数量。水培系统中的水量很重要,因为最佳的植物生长取决于植物获得的营养物质的数量。TDS数据是顺序数据,进行预测的一种方法是使用LSTM。本研究使用了100、200、300、400和500历元值的组合。的RMSE值为57.41、50.90、57.81、67.60和26.62。一般来说,除了70%:30%的组合外,每个组合的最小RMSE值产生的图接近。与测试数据(90%:10%)相比,训练数据的使用量越大,平均RMSE值越小,为35.48。关键词:lstm;预报;水培
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Trashcan Design Using Quality Function Deployment (QFD) Method For The Campus Garbage Separation Pyrolysis of Ethylene Vynyl Acetate Polymer by Natural Zeolite Catalyst as an Alternative Fuel LSTM Based Prediction of Total Dissolved Solids in Hydroponic System Process Design Study of Methyl Tertiary-Butyl Ether Production Using Reactive Distillation Discovering Meaningful Pattern of Undergraduate Students Data using Association Rules Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1