The impact of visual and blind signing on signature biometrics

Yasemin Bay, Meryem Erbilek, Ama Fosuah Gyasi Cyprus, Erbuğ Çelebi
{"title":"The impact of visual and blind signing on signature biometrics","authors":"Yasemin Bay, Meryem Erbilek, Ama Fosuah Gyasi Cyprus, Erbuğ Çelebi","doi":"10.1109/CICN.2017.8319377","DOIUrl":null,"url":null,"abstract":"The ubiquitous nature of our digital lifestyle raised many security issues including signature imitation and stealing of our identity. Therefore, there is a need for robust systems to verify or identify the signatory. In this paper, in contradistinction to other researchers working in signature biometrics, we investigate and explore the impact of blind and visual signing in signature biometrics for online signature identification. Experimental performance evaluation, using the publicly available SUSIG signature database, is carried out to provide some new and preliminary insights into the relationship between different practical factors, in particular clarifying the impact on identification performance of the blind and visual signing data collection protocols used to support the signature processing. Our results explored that adaption of the blind or visual signing data collection protocols has impact on the recognition performance less critical than hitherto expected.","PeriodicalId":339750,"journal":{"name":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2017.8319377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ubiquitous nature of our digital lifestyle raised many security issues including signature imitation and stealing of our identity. Therefore, there is a need for robust systems to verify or identify the signatory. In this paper, in contradistinction to other researchers working in signature biometrics, we investigate and explore the impact of blind and visual signing in signature biometrics for online signature identification. Experimental performance evaluation, using the publicly available SUSIG signature database, is carried out to provide some new and preliminary insights into the relationship between different practical factors, in particular clarifying the impact on identification performance of the blind and visual signing data collection protocols used to support the signature processing. Our results explored that adaption of the blind or visual signing data collection protocols has impact on the recognition performance less critical than hitherto expected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉和盲签对签名生物识别的影响
无处不在的数字生活方式引发了许多安全问题,包括签名模仿和身份盗用。因此,需要一个健壮的系统来验证或识别签署人。在本文中,与其他研究签名生物识别的研究人员相比,我们研究和探讨了盲签名和视觉签名在签名生物识别技术中对在线签名识别的影响。利用公开可用的SUSIG签名数据库进行实验性能评估,为不同实际因素之间的关系提供一些新的和初步的见解,特别是澄清用于支持签名处理的盲签名和视觉签名数据收集协议对识别性能的影响。我们的研究结果表明,盲签名或视觉签名数据收集协议的适应对识别性能的影响没有预期的那么严重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact dual band printed planar inverted-F antenna for wireless communications Implementing Diffie-Hellman key exchange method on logical key hierarchy for secure broadcast transmission Data analytics using cloud computing Feature selection for protein dihedral angle prediction Facial expression recognition using enhanced local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1