A hybird self-learning method based on particle swarm optimization and salp swarm algorithm

Zhenlun Yang, Kunquan Shi, A. Wu, Meiling Qiu, Xue-meng Wei
{"title":"A hybird self-learning method based on particle swarm optimization and salp swarm algorithm","authors":"Zhenlun Yang, Kunquan Shi, A. Wu, Meiling Qiu, Xue-meng Wei","doi":"10.1109/ICICIP47338.2019.9012195","DOIUrl":null,"url":null,"abstract":"This paper presents a novel self-learning hybrid optimization algorithm based on the particle swarm optimization (PSO) algorithm and the salp swarm algorithm (SSA) algorithm, namely HSL-PSO-SSA, for solving the function optimization problems. In HSL-PSO-SSA, three search strategies based on the ideas of PSO and SSA are adopted and a probability model is designed to determine the probability of a search strategy being used to update an individual in the search population. The performance of the HSL-PSO-SSA is investigated on solving the unimodal and multimodal benchmark functions. From the experimental results, it is observed that the proposed HSL-PSO-SSA outperforms the compared algorithms including the standard PSO and the original SSA.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"470 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel self-learning hybrid optimization algorithm based on the particle swarm optimization (PSO) algorithm and the salp swarm algorithm (SSA) algorithm, namely HSL-PSO-SSA, for solving the function optimization problems. In HSL-PSO-SSA, three search strategies based on the ideas of PSO and SSA are adopted and a probability model is designed to determine the probability of a search strategy being used to update an individual in the search population. The performance of the HSL-PSO-SSA is investigated on solving the unimodal and multimodal benchmark functions. From the experimental results, it is observed that the proposed HSL-PSO-SSA outperforms the compared algorithms including the standard PSO and the original SSA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化和salp群算法的混合自学习方法
本文提出了一种基于粒子群算法(PSO)和salp群算法(SSA)的自学习混合优化算法,即HSL-PSO-SSA,用于求解函数优化问题。在HSL-PSO-SSA中,基于PSO和SSA的思想,采用了三种搜索策略,并设计了一个概率模型来确定搜索策略被用于更新搜索种群中个体的概率。研究了HSL-PSO-SSA在求解单峰和多峰基准函数方面的性能。实验结果表明,HSL-PSO-SSA算法优于标准PSO算法和原始SSA算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Robot Autonomous Exploration and Navigation in Large-scale Indoor Environments Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification Sparse Coding with Outliers A Novel Fuzzy Logic Control on the FVVT Lift of Internal Combustion Engine Adaptive Fuzzy Compensation Control of MIMO Stochastic Nonlinear Systems with Input Hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1