A Robust Mean Shift Tracking Algorithm Combined with Gray Spatial Texture

Q. Tian, Jianfei Mao, B. Zheng, Ronghua Liang, Peile Zhang
{"title":"A Robust Mean Shift Tracking Algorithm Combined with Gray Spatial Texture","authors":"Q. Tian, Jianfei Mao, B. Zheng, Ronghua Liang, Peile Zhang","doi":"10.1109/ICIE.2010.53","DOIUrl":null,"url":null,"abstract":"The classical Mean Shift algorithm has some limitations in target tracking of gray image sequences for it only adopts the simple gray color information. We present an improved Mean Shift tracking algorithm in this paper. Our approach employs the information of gray spatial texture which is used to characterize the object in matching models calculation. Thus, the proposed algorithm can recognize the real target from a complicated background. The experiments show that improved Mean Shift tracking algorithm has higher efficiency and reliability than previous method.","PeriodicalId":353239,"journal":{"name":"2010 WASE International Conference on Information Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 WASE International Conference on Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIE.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The classical Mean Shift algorithm has some limitations in target tracking of gray image sequences for it only adopts the simple gray color information. We present an improved Mean Shift tracking algorithm in this paper. Our approach employs the information of gray spatial texture which is used to characterize the object in matching models calculation. Thus, the proposed algorithm can recognize the real target from a complicated background. The experiments show that improved Mean Shift tracking algorithm has higher efficiency and reliability than previous method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种结合灰度空间纹理的鲁棒Mean Shift跟踪算法
经典的Mean Shift算法仅采用简单的灰度信息,在灰度图像序列的目标跟踪中存在一定的局限性。本文提出了一种改进的Mean Shift跟踪算法。该方法在匹配模型计算中利用灰度空间纹理信息对目标进行表征。因此,该算法可以从复杂的背景中识别出真实目标。实验表明,改进的Mean Shift跟踪算法比以前的方法具有更高的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking Object Using Object-strips Color Feature Design and Development of SPC90 Slag Pot Carrier of Large Steel Slag Transportation Special Device for Steel Mills Parallel Computing for Dynamic Asset Allocation Based on the Stochastic Programming Decomposition of Health Cost and Modeling of Asset Allocation Research on Materials Sequence Supply Model of Mixed-model Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1