Surface Type Classification for Autonomous Robots Using Temporal, Statistical and Spectral Feature Extraction and Selection

Md. Al Mehedi Hasan, Fuad Al Abir, Jungpil Shin
{"title":"Surface Type Classification for Autonomous Robots Using Temporal, Statistical and Spectral Feature Extraction and Selection","authors":"Md. Al Mehedi Hasan, Fuad Al Abir, Jungpil Shin","doi":"10.1109/MCSoC51149.2021.00029","DOIUrl":null,"url":null,"abstract":"Real-time surface recognition has become a crucial component in assuring the safe walking of intelligent autonomous robots in a complex human-living interior environment. Numerous studies have been done addressing the problem recently. Still, there is a scope of improvements for accurate classification and inference time. In this paper, we have extracted features from accelerometer and gyroscope data in the temporal, statistical and spectral domain and classified them using a tree-based ensembling classification algorithm. We have achieved 80.81% mean accuracy, classifying 9 different surfaces with 1.0% standard deviation in 10-fold cross-validation and 97.25% average AUC score. Our method acquired state-of-the-art accuracy ensuring minimal inference time which is essential for real-time recognition for the autonomous robots.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time surface recognition has become a crucial component in assuring the safe walking of intelligent autonomous robots in a complex human-living interior environment. Numerous studies have been done addressing the problem recently. Still, there is a scope of improvements for accurate classification and inference time. In this paper, we have extracted features from accelerometer and gyroscope data in the temporal, statistical and spectral domain and classified them using a tree-based ensembling classification algorithm. We have achieved 80.81% mean accuracy, classifying 9 different surfaces with 1.0% standard deviation in 10-fold cross-validation and 97.25% average AUC score. Our method acquired state-of-the-art accuracy ensuring minimal inference time which is essential for real-time recognition for the autonomous robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间、统计和光谱特征提取与选择的自主机器人表面类型分类
实时表面识别已成为保证智能自主机器人在复杂的人类居住室内环境中安全行走的重要组成部分。最近针对这个问题做了大量的研究。尽管如此,在准确分类和推理时间方面仍有很大的改进空间。在本文中,我们从加速度计和陀螺仪数据中提取了时间域、统计域和频谱域的特征,并使用基于树的集成分类算法对它们进行分类。在10倍交叉验证中,我们对9个不同的表面进行了分类,平均准确率为80.81%,标准差为1.0%,平均AUC得分为97.25%。我们的方法获得了最先进的精度,确保了最小的推理时间,这对自主机器人的实时识别至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distance Estimation Method to Railway Crossing Using Warning Signs FPGA-Based Implementation of the Stereo Matching Algorithm Using High-Level Synthesis A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA Enhancing Autotuning Capability with a History Database UI Method to Support Knowledge Creation in Hybrid Museum Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1